Rutgers University Math 152

Section 10.9: Convergence of Taylor Series - Worksheet

- 1. Use the Remainder Estimation Theorem to estimate the error made when approximating $f(x) = \sqrt{1+3x}$ by its 2nd degree Maclaurin polynomial $T_2(x)$ on the interval [0, 0.1].
- 2. Consider the function $f(x) = \frac{1}{1+2x}$.
 - (a) Find the Maclaurin series of f using geometric series. What are its radius and interval of convergence?
 - (b) Find the Maclaurin series of f using its definition. (Hint: compute the first few derivatives of f and identify a pattern to find a formula for $f^{(n)}(x)$.)
 - (c) Find is the smallest integer N for which the Maclaurin polynomial $T_N(x)$ of f(x) approximates f(x) with an error of at most 10^{-4} on the the interval [-0.1, 0.1].
- 3. Find the Maclaurin series of the following functions.
 - (a) $f(x) = x^4 \ln(1 5x^3)$. (b) $f(x) = e^{-x^2/2} - \cos(x)$.
- 4. Find the first three non-zero terms of the Maclaurin series of $\sin(2x)e^{3x}$.