Section 10.9: Convergence of Taylor Series - Worksheet Solutions

1. Use the Remainder Estimation Theorem to estimate the error made when approximating $f(x)=$ $\sqrt{1+3 x}$ by its $2^{\text {nd }}$ degree Maclaurin polynomial $T_{2}(x)$ on the interval $[0,0.1]$.

Solution. The Remainder Estimation Theorem gives us the error bound

$$
\left|R_{2}(x)\right| \leqslant \frac{M|x|^{3}}{3!} \leqslant \frac{M(0.1)^{3}}{6}
$$

In this estimate, M is any number such that $M \geqslant\left|f^{(3)}(x)\right|$ for x in the interval $[0,0.1]$. We have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{3}{2 \sqrt{1+3 x}} \\
f^{\prime \prime}(x) & =-\frac{9}{4(1+3 x)^{3 / 2}} \\
f^{(3)}(x) & =\frac{81}{8(1+3 x)^{5 / 2}}
\end{aligned}
$$

Since the smallest value of $1+3 x$ is 1 on the interval $[0,0.1]$, we have $\left|f^{(3)}(x)\right| \leqslant \frac{81}{8}$. So we can choose $M=\frac{81}{8}$ for our error estimation. We obtain the error

$$
\frac{81(0.1)^{3}}{8 \cdot 6}=\frac{27}{16000}
$$

2. Consider the function $f(x)=\frac{1}{1+2 x}$.
(a) Find the Maclaurin series of f using geometric series. What are its radius and interval of convergence?

Solution. We recognize that $f(x)$ is the sum of a geometric series with first term 1 and common ratio $-2 x$, so

$$
f(x)=\sum_{n=0}^{\infty}(-2 x)^{n}=\sum_{n=0}^{\infty}(-2)^{n} x^{n}
$$

We know that a geometric series converges when its common ratio r satisfies $-1<r<1$. So the Maclaurin series of f converges when $-1<-2 x<1$, which gives $-\frac{1}{2}<x<\frac{1}{2}$. Therefore, the ROC is $R=\frac{1}{2}$ and the IOC is $\left(-\frac{1}{2}, \frac{1}{2}\right)$.
(b) Find the Maclaurin series of f using its definition. (Hint: compute the first few derivatives of f and identify a pattern to find a formula for $f^{(n)}(x)$.)

Solution. We have

$$
\begin{aligned}
& f^{\prime}(x)=-\frac{2}{(1+2 x)^{2}}, \\
& f^{\prime \prime}(x)=\frac{2^{2} \cdot 2}{(1+2 x)^{3}}, \\
& f^{(3)}(x)=-\frac{2^{3} \cdot 2 \cdot 3}{(1+2 x)^{3}}, \\
& f^{(4)}(x)=\frac{2^{4} \cdot 2 \cdot 3 \cdot 4}{(1+2 x)^{4}}, \\
& f^{(5)}(x)=-\frac{2^{5} \cdot 2 \cdot 3 \cdot 4 \cdot 5}{(1+2 x)^{5}} .
\end{aligned}
$$

From this, we can see the following pattern for the higher derivatives of f :

$$
f^{(n)}(x)=(-1)^{n} \frac{2^{n} n!}{(1+2 x)^{n}} .
$$

Therefore, the coefficients of the Maclaurin series of f are given by

$$
c_{n}=\frac{f^{(n)}(0)}{n!}=\frac{(-1)^{n} 2^{n} n!}{n!}=(-2)^{n}
$$

We deduce that the Maclaurin series of f is given by

$$
T(x)=\sum_{n=0}^{\infty}(-2)^{n} x^{n}
$$

(c) Find is the smallest integer N for which the Maclaurin polynomial $T_{N}(x)$ of $f(x)$ approximates $f(x)$ with an error of at most 10^{-4} on the interval $[-0.1,0.1]$.

Solution. Let us start by finding an expression for the error made when approximating $f(x)$ with $T_{N}(x)$ on the interval $[-0.1,0.1]$. The Remainder Estimation Theorem gives us the error bound

$$
\left|R_{N}(x)\right| \leqslant \frac{M|x|^{N+1}}{(N+1)!} \leqslant \frac{M(0.1)^{N+1}}{(N+1)!}
$$

In this estimate, M is any number such that $M \geqslant\left|f^{(N+1)}(x)\right|$ for x in the interval $[-0.1,0.1]$. Using the formula for the higher derivatives of f that we found in the previous question, we have

$$
\left|f^{(N+1)}(x)\right|=\left|(-1)^{N+1} \frac{2^{N+1}(N+1)!}{(1+2 x)^{N+1}}\right|=\frac{2^{N+1}(N+1)!}{|1+2 x|^{N+1}} .
$$

This expression is largest when the denominator is smallest. In the interval $[-0.1,0.1]$, this occurs when $x=-0.1$. So we can take for M the quantity

$$
M=\frac{2^{N+1}(N+1)!}{(1+2(-0.1))^{N+1}}=\frac{2^{N+1}(N+1)!}{0.8^{N+1}}=2.5^{N+1}(N+1)!
$$

So the error becomes

$$
\frac{M(0.1)^{N+1}}{(N+1)!}=\frac{2.5^{N+1}(N+1)!(0.1)^{N+1}}{(N+1)!}=0.25^{N+1}=\frac{1}{4^{N+1}}
$$

Now we want this error to be less than 10^{-4}, that is

$$
\frac{1}{4^{N+1}}<10^{-4}
$$

Taking reciprocals, this is equivalent to $4^{N+1}>10000$. Computing the first few powers of 4 , we see that this condition is met when the exponent of 4 is at least 7 . So the smallest value of N giving the desired error is when $N+1=7$, that is $N=6$.
3. Find the Maclaurin series of the following functions.
(a) $f(x)=x^{4} \ln \left(1-5 x^{3}\right)$.

Solution. From

$$
\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}
$$

we get

$$
\begin{aligned}
x^{4} \ln \left(1-5 x^{3}\right) & =x^{4} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\left(-5 x^{3}\right)^{n}}{n} \\
& =x^{4} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{(-5)^{n} x^{3 n}}{n} \\
& =\sum_{n=1}^{\infty}-\frac{5^{n} x^{3 n+4}}{n}
\end{aligned}
$$

(b) $f(x)=e^{-x^{2} / 2}-\cos (x)$.

Solution. We know

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots
$$

so

$$
\begin{aligned}
e^{-x^{2} / 2} & =\sum_{n=0}^{\infty} \frac{\left(-\frac{x^{2}}{2}\right)^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{n} n!} \\
& =1-\frac{x^{2}}{2}+\frac{x^{4}}{8}-\frac{x^{6}}{48}+\cdots
\end{aligned}
$$

We also know that

$$
\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+\cdots
$$

When we subtract these two Maclaurin series, the first two terms will cancel out. Combining the remaining terms gives

$$
\begin{aligned}
e^{-x^{2} / 2}-\cos (x) & =\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{8}-\frac{x^{6}}{48}+\cdots\right)-\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+\cdots\right) \\
& =\left(\frac{1}{8}-\frac{1}{24}\right) x^{4}-\left(\frac{1}{48}-\frac{1}{720}\right) x^{6}+\cdots \\
& =\sum_{n=2}^{\infty}(-1)^{n}\left(\frac{1}{2^{n} n!}-\frac{1}{(2 n)!}\right) x^{2 n}
\end{aligned}
$$

4. Find the first three non-zero terms of the Maclaurin series of $\sin (2 x) e^{3 x}$.

Solution. We have

$$
\sin (2 x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 x)^{2 n+1}}{(2 n+1)!}=2 x-\frac{4 x^{3}}{3}+\cdots
$$

and

$$
e^{3 x}=\sum_{n=0}^{\infty} \frac{(3 x)^{n}}{n!}=1+3 x+\frac{9 x^{2}}{2}+\cdots
$$

So

$$
\sin (2 x) e^{3 x}=\left(2 x-\frac{4 x^{3}}{3}+\cdots\right)\left(1+3 x+\frac{9 x^{2}}{2}+\cdots\right)
$$

We can now distribute the terms and collect terms of same degree. Let us detail degree by degree what we obtain.

- We do not get any terms in degree 0 .
- We get one term in degree 1 , from multiplying the $2 x$ in the left factor with the 1 in the right factor. This gives us $2 x$ as our first non-zero term.
- We get one term in degree 2 , from multiplying the $2 x$ in the left factor with the $3 x$ in the right factor. This gives us $6 x^{2}$ as our second non-zero term.
- We get two terms in degree 3 , the first one from multiplying the $2 x$ in the left factor with the $\frac{9 x^{2}}{2}$ in the right factor, and the second one from multiplying the $-\frac{4 x^{3}}{3}$ in the left factor with the 1 in the right factor. This gives us $9 x^{3}-\frac{4 x^{3}}{3}=\frac{23 x^{3}}{3}$ as our third non-zero term.

Therefore, the first three non-zero terms of the Maclaurin of $\sin (2 x) e^{3 x}$ are

$$
2 x+6 x^{2}+\frac{23 x^{3}}{3}
$$

