Sections $11.1,11.2$
Parametric Curves

Learning Goals

11.1.1 Express/match to a curve as $\mathrm{y}=\mathrm{f}(\mathrm{x})$ (with direction and initial an terminal points) by eliminating the parameter	$11.1: 3,5,7,8,11,19,20,21,22,23,24$
11.1.2 Draw a parametric curve	$11.1: 25$
11.1.3 Parameterize a curve	$11.1: 30,31,33,37$
11.2.1 Find the tangent line to a parametric curve at a given parameter	$11.2: 5,9,11,14$ Also: 43
11.2.2 Find the first and the second derivative of a parametric equation	$11.2: 5,11,14$
11.2.3 Find the slope of an implicitly defined parametric curves at a given parameter.	$11.2: 15,18,19$ Also 11.2: 43
11.2.4 Find an area enclosed by parametric curves	$11.2: 21,23$
11.2.5 Find the arc length of a parametric curve	$11.2: 25,27,29,42,47$
11.2.6 Find the surface area of a surface that is generated by revolving a parametric curve about either the x or the y axis	$11.2: 33,34,36$,

Conceptual introduction: imagine that a particle moves in the $x y$-plane. As it moves, the particle traces a path on a

Denote by $(x(t), y(t))$ the position of the particle at the time t.

$$
\left\{\begin{array}{l}
x=x(t) \\
y=y(t)
\end{array} \quad a \leqslant t \leqslant b\right.
$$

are parametric equations of the curve. or a parametrization

- t is the parameter (here time, could be another physical quantity, such as an angle)
- $a \leqslant t \leqslant b$ is the parameter interval (could be open and/or unbounded)
- $P(a)=$ initial point

$$
P(b)=\text { terminal point }
$$

Examples: 1) Find an equation of the curve parametrized by $\left\{\begin{array}{l}x=2 t+1 \\ y=1+t^{2}\end{array} \quad t \geq 0\right.$.

We can find an equation by solving for t in one of the equations and plugging-in the other.

$$
x=2 t+1 \Rightarrow t=\frac{x-1}{2}
$$

So

$$
\begin{aligned}
& y=1+t^{2} \\
& y=1+\left(\frac{x-1}{2}\right)^{2}
\end{aligned}
$$

2) Find a parametrization of the line passing through $(1,-2)$ with slope 3 .

$$
\left\{\begin{array}{l}
x=x_{0}+u t \\
y=y_{0}+s t
\end{array} \quad,-\infty<t<\infty\right.
$$

is a parametrization of the line passing through $\left(x_{0}, y_{0}\right)$ with slope

$$
m=\frac{s}{u}
$$

Here, $\left\{\begin{array}{l}x=1+t \\ y=-2+3 t\end{array}\right.$ and $\left\{\begin{array}{l}x=1-2 t \\ y=-2-6 t\end{array}\right.$ are two possible
parametrization of the curve.

Remark: a curve can have many parametrizations. Each para-- metrization represents a path on this curve, with a certain initial point, direction and speed.
3) Find a parametrization of the circle of center $(2,3)$ and radius 4 .

$$
\left\{\begin{array} { l }
{ \frac { x - 2 } { 4 } = \operatorname { c o s } (t) } \\
{ \frac { y - 3 } { 4 } = \operatorname { s i n } (t) }
\end{array} \quad \Rightarrow \left\{\begin{array}{l}
x=2+4 \cos (t) \\
y=3+4 \sin (t)
\end{array}\right.\right.
$$

goes around once counterclockwise
4) Parametrize the ellipse $4 x^{2}+9 y^{2}=25$.

5) Match each parametric equation with its curve.
(1) $\left\{\begin{array}{l}x=t-\sin (t) \\ y=1-\cos (t)\end{array}\right.$ $t \geqslant 0$
(2) $\left\{\begin{array}{l}x=\cos (t) \\ y=2 \sin (t)\end{array}\right.$
$0 \leqslant t \leqslant \pi$

(3) $\left\{\begin{array}{l}x=\cos (3 t) \\ y=\sin (t)\end{array}\right.$

Solution: $I: B, \quad 2: C, 3: A$.

Calculus with parametric curves:

- Tangent line: the slope of the tangent line to a parametric curve $\left\{\begin{array}{l}x=f(t) \\ y=g(t)\end{array}\right.$ is given by:

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{g^{\prime}(t)}{f^{\prime}(t)}
$$

Example: find the equation of the tangent line to

$$
\left\{\begin{array}{l}
x=\sec (t) \\
y=\tan (t)
\end{array} \quad \text { at the point corresponding to } t=\frac{\pi}{3} .\right.
$$

We have $\frac{d y}{d t}=\sec (t)^{2}, \frac{d x}{d t}=\sec (t) \tan (t)$
So $\frac{d y}{d x}=\frac{\sec (t)^{2}}{\sec (t) \tan (t)}=\frac{\sec (t)}{\tan (t)}=\csc (t)$.
At $t=\frac{\pi}{3}:\left\{\begin{array}{l}x=\sec \left(\frac{\pi}{3}\right)=2 \\ y=\tan \left(\frac{\pi}{3}\right)=\sqrt{3} \\ \frac{d y}{d x}=\operatorname{coc}\left(\frac{\pi}{3}\right)=\frac{2}{\sqrt{3}}\end{array}\right.$
So the tangent line has equation: $y=\frac{2}{\sqrt{3}}(x-2)+\sqrt{3}$

- Second derivative: if we apply $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$ to $y^{\prime}=\frac{d y}{d x}$,
we get:
$\frac{d^{2} y}{d x^{2}}=\frac{\frac{d y^{\prime}}{d t}}{d z^{\prime}} \quad y^{\prime}$ needs to be expressed in terms of t to use this formula.

Example: find $\frac{d^{2} y}{d x^{2}}$ for $\left\{\begin{array}{l}x=t-t^{2} \\ y=t-t^{3}\end{array}\right.$

$$
y^{\prime}=\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{1-3 t^{2}}{1-2 t}
$$

So $\frac{d y^{\prime}}{d t}=\frac{-6 t(1-2 t)-\left(1-3 t^{2}\right)(-2)}{(1-2 t)^{2}}=\frac{6 t^{2}-6 t+2}{(1-2 t)^{2}}$ and $\frac{d^{2} y}{d x^{2}}=\frac{d y^{\prime} / d t}{d x / d t}=\frac{6 t^{2}-6 t+2}{(1-2 t)^{3}}$

- Area under curves:

$$
\begin{aligned}
& A=\int_{\alpha}^{\beta} y d x \\
& A=\int_{a}^{b} y(t) \frac{d x}{d t} d t=\int_{a}^{b} g(t) f^{\prime}(t) d t
\end{aligned}
$$

Example: find the area under one arch of the cycloid

$$
\begin{aligned}
& \left\{\begin{array}{l}
P(\pi)=(a \pi, 2 a) \\
\begin{array}{rl}
x=a(t-\sin (t)) \quad(a>0) \\
y=a(1-\cos (t))
\end{array} \\
\begin{array}{rl}
P(0) & =(0,0) \\
& \int_{0}^{2 \pi a} y d x \quad(x-\text { integral) }
\end{array} \\
=\int_{0}^{2 \pi} y \frac{d x}{d t} d t \quad(t-\text { integral) } \\
\\
=\int_{0}^{2 \pi} a(1-\cos (t)) a(1-\cos (t)) d t \\
\end{array} a^{2} \int_{0}^{2 \pi}(1-\cos (t))^{2} d t\right. \\
& =a^{2} \int_{0}^{2 \pi}\left(1-2 \cos (t)+\cos (t)^{2}\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& =a^{2} \int_{0}^{2 \pi}\left(1-2 \cos (t)+\frac{1+\cos (2 t)}{2}\right) d t \\
& =a^{2}\left[t-2 \sin (t)+\frac{t}{2}+\frac{\sin (2 t)}{4}\right]_{0}^{2 \pi} \\
& =3 \pi a^{2}
\end{aligned}
$$

- Arc length:

We can compute L with:
$\left.\begin{array}{l}\text { - an } x \text {-integral } \\ \text { - a } y \text {-integral }\end{array}\right\}$ section 6.3.

- a t-integral
$L=\int_{\text {curve }} d s \quad$ with $d s=\sqrt{d x^{2}+d y^{2}}$
-x-integral : $L=\int_{x_{0}}^{x_{1}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \quad$ (provided $\frac{d y}{d x}$ continuous)
- y-integral: $L=\int_{y_{0}}^{y_{1}} \sqrt{\left(\frac{d x}{d y}\right)^{2}+1} d y \quad$ (provided $\frac{d x}{d y}$ continuous)
- t-integral: $L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{a}^{b} \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}} d t$
provided $\frac{d x}{d t}, \frac{d y}{d t}$ do not equal zero simultaneously and the path is traced once for $a \leq t \leq b$.

Examples: 1) find the length of one arch of the cycloid

$$
\left\{\begin{array}{l}
x=a(t-\sin (t)) \\
y=a(1-\cos (t))
\end{array} \quad(a>0)\right.
$$

$$
L=\int_{0}^{2 \pi} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

$$
=\int_{0}^{2 \pi} \sqrt{a^{2}\left(1-\cos (t)^{2}+a^{2} \sin (t)^{2}\right.} d t
$$

$$
=a \int_{0}^{2 \pi} \sqrt{1-2 \cos (t)+\cos (t)^{2}+\sin (t)^{2}} d t
$$

$$
=a \int_{0}^{2 \pi} \sqrt{2-2 \cos (t)} d t
$$

$$
=a \int_{0}^{2 \pi} \sqrt{4 \sin \left(\frac{t}{2}\right)^{2}} d t
$$

$$
1-\cos (t)=2 \sin \left(\frac{t}{2}\right)^{2}
$$

$$
=2 a \int_{0}^{2 \pi} \sin \left(\frac{t}{2}\right) d t=2 a\left[-2 \cos \left(\frac{t}{2}\right)\right]_{0}^{2 \pi}=8 a
$$

2) Find the circumference of a circle of radius R using a parametric integral.

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{0}^{2 \pi} \sqrt{R^{2} \sin (t)^{2}+R^{2} \cos (t)^{2}} d t \\
& =\int_{0}^{2 \pi} R d t=2 \pi R
\end{aligned}
$$

- Areas of surfaces of revolution:

We revolve a curve $\left\{\begin{array}{l}x=f(t) \\ y=g(t)\end{array}\right.$ a \quad t around the x-axis.
We can compute the resulting surface area using
$\left.\begin{array}{l}\text { - an } x \text {-integral } \\ \text { - a } y \text {-integral }\end{array}\right\}$ section 6.4 .

- a t-integral

$$
A=\int_{\text {curve }} 2 \pi y d s=\int_{x_{0}}^{x_{1}} 2 \pi y(x) \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{y_{0}}^{y_{1}} 2 \pi y \sqrt{\left(\frac{d x}{d y}\right)^{2}+1} d y
$$

(x - integral)
(y-integral)
With a t-integral: $\quad \begin{aligned} A & =\int_{a}^{b} 2 \pi y(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\ & =\int_{a}^{b} 2 \pi g(t) \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}} d t\end{aligned}$

We can do the same for a curve revolved around the y-axis.

$$
A=\int_{\text {curve }} 2 \pi x d s=\int_{y_{0}}^{y_{1}} 2 \pi x(y) \sqrt{\left(\frac{d x}{d y}\right)^{2}+1} d y=\int_{x_{0}}^{x_{1}} 2 \pi \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

(y-integral)

With a t-integral:

$$
\begin{aligned}
A & =\int_{a}^{b} 2 \pi x(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{a}^{b} 2 \pi f(t) \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}} d t
\end{aligned}
$$

Example: the circle of radius 2 centered at $(0,3)$ is revolved around the x-axis. Find the resulting surface area.

Parametrization of the circle: $\left\{\begin{array}{l}x=2 \cos (t) \\ y=3+2 \sin (t)\end{array} \quad 0 \leqslant t \leqslant 2 \pi\right.$

$$
\begin{aligned}
A & =\int_{0}^{2 \pi} 2 \pi y(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{0}^{2 \pi} 2 \pi(3+2 \sin (t)) \sqrt{4 \sin (t)^{2}+4 \cos (t)^{2}} d t \\
& =4 \pi \int_{0}^{2 \pi}(3+2 \sin (t)) d t=4 \pi[3 t-2 \cos (t)]_{0}^{2 \pi}=24 \pi^{2}
\end{aligned}
$$

