## Sections 11.1, 11.2: Parametric Curves - Worksheet

1. Find an equation of the tangent line to the given parametric curve at the point defined by the given value of $t$.
(a) $\left\{\begin{array}{l}x=5 t^{2}-7 \\ y=t^{4}-3 t\end{array}, t=-1\right.$.
(b) $\left\{\begin{array}{l}x=e^{4 t}-e^{t}+2 \\ y=t-3 e^{2 t}\end{array}, t=0\right.$.
(c) $\left\{\begin{array}{l}x=\sec (3 t) \\ y=\cot (2 t-\pi)\end{array}, t=\frac{\pi}{12}\right.$.
2. Find all points on the following parametric curves where the tangent line is (i) horizontal, and (ii) vertical.
(a) $\left\{\begin{array}{l}x=\sin (2 t)+1 \\ y=\cos (t)\end{array}, 0 \leqslant t<2 \pi\right.$.
(c) $\left\{\begin{array}{l}x=4 t-e^{2 t} \\ y=t^{2}-18 \ln |t|\end{array}\right.$
(b) $\left\{\begin{array}{l}x=3 t-t^{3} \\ y=t^{2}+4 t+3\end{array}\right.$
3. Consider the ellipse of equation $x^{2}+4 y^{2}=4$.
(a) Find a parametrization of the ellipse.
(b) Find the area enclosed by the ellipse.
(c) Find the area of the surface obtained by revolving the top-half of the ellipse about the $x$-axis.
4. For each of the following parametric curves: (i) find the arc length, (ii) set-up (but do not evaluate) an integral that computes the area of the surface obtained by revolving the curve about the $x$-axis and (iii) set-up (but do not evaluate) an integral that computes the area of the surface obtained by revolving the curve about the $y$-axis.
(a) $\left\{\begin{array}{l}x=e^{4 t} \\ y=e^{5 t}\end{array}, 0 \leqslant t \leqslant 1\right.$.
(b) $\left\{\begin{array}{l}x=\ln (t) \\ y=\sin ^{-1}(t)\end{array}, \frac{1}{2} \leqslant t \leqslant \frac{1}{\sqrt{2}} \cdot\right.$ (c) $\left\{\begin{array}{l}x=t^{3}-t \\ y=\sqrt{3} t^{2}\end{array}, 0 \leqslant t \leqslant 1\right.$.
