Learning Goals

11.3.1 Find different labels to the same point.	$11.3: 1,2$
11.3.2 Convert polar coordinates to rectangular coordinates and vice versa	$11.3: 6,7,8$
11.3.3 Sketch a polar curve	$11.3: 11,13,14,15,19$ Also 10.5: 6,19,29
11.3.4 Convert polar curves to Cartesian curves and vice versa	$11.3: 28,31,35,40,41,43,48.49,56,60,65,68$
11.4.1 Identify symmetries and sketch a polar curve in the xy-plane.	$11.4: 1,6$
11.4.2 Find a slope and a tangent line to a polar curve at a given theta	$11.4: 19,20$

Conceptual introduction: we commonly use Cartesian / rectangular coordinates (x, y) to locate a point in the $x y$-plane. Polar coordinates are a different way of locating a point.

$r=$ distance from the origin $\theta=$ angle from positive x-axis $(r, \theta)=$ polar coordinates.

Conversion formulas:

Cartesian to Polar	Polar to Cartesian
$r=\sqrt{x^{2}+y^{2}}$	$x=r \cos (\theta)$
$\tan (\theta)=\frac{y}{x}$	$y=r \sin (\theta)$

Grids :

Cartesian grid:
vertical lines are $x=$ constant
horizontal lines are $y=$ constant

Polar grid: circles are $r=$ constant rays are $\theta=$ constant

Examples: 1) Find the cartesian coordinates of the points having polar coordinates a) $\left(3, \frac{5 \pi}{6}\right)$ and b) $\left(2,-\frac{\pi}{4}\right)$.
a)

$$
\begin{aligned}
\left(3, \frac{5 \pi}{6}\right): x & =r \cos (\theta)=3 \cos \left(\frac{5 \pi}{6}\right)=-\frac{3 \sqrt{3}}{2} \\
y & =r \sin (\theta)=3 \sin \left(\frac{5 \pi}{6}\right)=\frac{3}{2}
\end{aligned} \Rightarrow\left(-\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)
$$

b)

$$
\begin{aligned}
\left(2,-\frac{\pi}{4}\right): x & =r \cos (\theta)=2 \cos \left(-\frac{\pi}{4}\right)=\sqrt{2} \\
y & =r \sin (\theta)=2 \sin \left(-\frac{\pi}{4}\right)=-\sqrt{2}
\end{aligned} \quad \Rightarrow(\sqrt{2},-\sqrt{2})
$$

2) Find a possible polar coordinate pair for the points having cartesian coordinates
a) $(4,-4)$ and
b) $(-1, \sqrt{3})$

$$
\begin{aligned}
& r=\sqrt{4^{2}+(-4)^{2}}=\sqrt{32}=4 \sqrt{2} . \\
& \tan (\theta)=\frac{-4}{4}=-1 \Rightarrow \theta=-\frac{\pi}{4} \text { or } \frac{3 \pi}{4}
\end{aligned}
$$

Point in QII, so $\theta=-\frac{\pi}{4}$.

$$
\Rightarrow \quad\left(4 \sqrt{2},-\frac{\pi}{4}\right)
$$

Remark:

- Polar coordinates are not unique: $\left(4 \sqrt{2}, \frac{7 \pi}{4}\right),\left(4 \sqrt{2},-\frac{9 \pi}{4}\right)$ also work here. Indeed, $(r, \theta)=(r, \theta+2 \pi k)$ for any integer k.
- We can allow r to be negative: $(-r, \theta)=(r, \theta+\pi)$. So $\left(-4 \sqrt{2}, \frac{3 \pi}{4}\right)$ would also be valid polar coordinates. for $(-4,4)$.

$$
\begin{aligned}
& r=\sqrt{(-1)^{2}+(\sqrt{3})^{2}}=2 . \\
& \tan (\theta)=-\sqrt{3} \Rightarrow \theta=-\frac{\pi}{3} \text { or } \frac{2 \pi}{3} .
\end{aligned}
$$

Since the point is in QII, $\theta=\frac{2 \pi}{3}$.

$$
\Rightarrow\left(2, \frac{2 \pi}{3}\right)
$$

! $\tan ^{-1}$ always give an angle in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (QI, IV).

$$
\theta=\left\{\begin{array}{lll}
\tan ^{-1}\left(\frac{y}{x}\right) \text { if } \quad x>0 & (\text { QI, II }) \\
\pi+\tan ^{-1}\left(\frac{y}{x}\right) & \text { if } x<0 & (\text { QII,II })
\end{array}\right.
$$

3) Which of these polar coordinates represent the same points?

$$
\left(2, \frac{\pi}{3}\right),\left(2,-\frac{2 \pi}{3}\right),\left(-2,-\frac{2 \pi}{3}\right),\left(2, \frac{4 \pi}{3}\right),\left(-2, \frac{4 \pi}{3}\right)
$$

Graphing equations in polar:
$\frac{\text { Cartesian equations: }}{y}$

$\frac{\text { Polar equations: }}{y_{\uparrow}}$

Symmetries of polar curves:

About x-axis

If (r, θ) is on the curve, then so is $(r,-\theta)$

About y-axis

If (r, θ) is on the curve, then so is $(r, \pi-\theta)$

About origin
 If (r, θ) is on the curve, then so is $(r, \theta+\pi)=(-\sigma, \theta)$

Examples: 1) Convert the polar curve $r=4 \csc (\theta)$ to Cartesian.

$$
\begin{array}{r}
r=\frac{4}{\csc (\theta)}=\frac{4}{\sin (\theta)} \Rightarrow \begin{array}{r}
r \sin (\theta)=4 \\
y=4
\end{array}
\end{array}
$$

2) Convert $y=x^{2}$ and $y=\sqrt{3} x$ from Cartesian to polar.

- For $y=x^{2}:\left\{\begin{array}{l}x=r \cos (\theta) \\ y=r \sin (\theta)\end{array} \Rightarrow r \sin (\theta)=r^{2} \cos (\theta)^{2}\right.$

$$
r=\frac{\sin (\theta)}{\cos (\theta)^{2}}
$$

$$
r=\tan (\theta) \sec (\theta)
$$

- For $y=\sqrt{3} x:\left\{\begin{array}{l}x=r \cos (\theta) \\ y=r \sin (\theta)\end{array} \Rightarrow r \sin (\theta)=\sqrt{3} r \cos (\theta)\right.$

3) Sketch the graph of $r=\frac{\theta}{\pi}$ on $0 \leqslant \theta \leqslant 3 \pi$.

θ	$r=\frac{\theta}{\pi}$
0	0
$\frac{\pi}{4}$	$\frac{1}{4}$
$\frac{\pi}{2}$	$\frac{1}{2}$
π	1
$\frac{3 \pi}{2}$	$\frac{3}{2}$
2π	2
3π	3

4) Sketch the graph of $r=\cos (3 \theta), 0 \leqslant \theta \leqslant \pi$.

We can use the graph in the ro-plane to help us graph in the $x y$-plane.

The curve has a symmetry about the x-axis since

$$
\cos (3(-\theta))=\cos (3 \theta) .
$$

No symmetry about the y-axis or the origin

$$
\begin{aligned}
& \cos (3(\pi-\theta))=\cos (3 \pi-3 \theta)=-\cos (3 \theta) \neq \cos (3 \theta) \\
& \cos (3(\theta+\pi))=\cos (3 \pi+3 \theta)=-\cos (3 \theta) \neq \cos (3 \theta)
\end{aligned}
$$

5) Sketch $r=1+2 \sin (\theta)$ for $-\pi \leqslant \theta \leqslant \pi$.

Since $\sin (\pi-\theta)=\sin (\theta)$, the curve is symmetric about the y-axis, so it suffices to sketch on $-\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2}$.

6) Sketch $r=1-\cos (2 \theta)$ for $0 \leqslant \theta \leqslant 2 \pi$.

Since $\cos (2(-\theta))=\cos (2 \theta)$, the curve is symmetric about the x-axis .

Since $\cos (2(\pi-\theta))=\cos (2 \pi-2 \theta)=\cos (2 \theta)$, the curve is symmetric about the y-axis.
So it suffices to sketch on $0 \leqslant \theta \leqslant \frac{\pi}{2}$

Tangent lines to polar curves:
A polar curve $r=f(\theta)$ can be parametrized using

$$
\left\{\begin{array}{l}
x=r \cos (\theta)=f(\theta) \cos (\theta) \\
y=r \sin (\theta)=f(\theta) \sin (\theta)
\end{array}\right.
$$

Then we can use what we have leaned about parametric curves to find $\frac{d y}{d x}$.

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta} \text { and }\left\{\begin{array}{l}
\frac{d y}{d \theta}=f^{\prime}(\theta) \sin (\theta)+f(\theta) \cos (\theta) \\
\frac{d x}{d \theta}=f^{\prime}(\theta) \cos (\theta)-f(\theta) \sin (\theta)
\end{array}\right.
$$

So $\frac{d y}{d x}=\frac{f^{\prime}(\theta) \sin (\theta)+f(\theta) \cos (\theta)}{f^{\prime}(\theta) \cos (\theta)-f(\theta) \sin (\theta)} \quad\left(\right.$ provided $\left.\frac{d x}{d \theta} \neq 0\right)$.

Remark: if the curve passes through the origin at $\theta=\theta_{0}$, then $f\left(\theta_{0}\right)=0$ and $\left.\frac{d y}{d x}\right|_{\theta=\theta_{0}}=\tan \left(\theta_{0}\right)$.

Examples: 1) Find an equation of the tangent line to $r=\sin (2 \theta)$ at $\theta=\frac{\pi}{3}$.

We have $f\left(\frac{\pi}{3}\right)=\sin \left(2 \frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$

$$
f^{\prime}(\theta)=2 \cos (2 \theta) \Rightarrow f^{\prime}\left(\frac{\pi}{3}\right)=2 \cos \left(\frac{2 \pi}{3}\right)=-1
$$

So $\left.\quad \frac{d y}{d x}\right|_{\theta=\frac{\pi}{3}}=\frac{f^{\prime}\left(\frac{\pi}{3}\right) \sin \left(\frac{\pi}{3}\right)+f\left(\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}\right)}{f^{\prime}\left(\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}\right)-f\left(\frac{\pi}{3}\right) \sin \left(\frac{\pi}{3}\right)}$

$$
=\frac{-1 \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2} \cdot \frac{1}{2}}{-1 \cdot \frac{1}{2}-\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}}=\frac{\sqrt{3}}{4} .
$$

At $\theta=\frac{\pi}{3}$, the curve passes through

$$
\begin{aligned}
& x=f\left(\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{4} \\
& y=f\left(\frac{\pi}{3}\right) \sin \left(\frac{\pi}{3}\right)=\frac{3}{4} .
\end{aligned}
$$

So the tangent line has equation:

$$
y=\frac{\sqrt{3}}{4}\left(x-\frac{\sqrt{3}}{4}\right)+\frac{3}{4}
$$

2) Find an equation of the tangent line to $r=1-\cos (\theta)$ at $\theta=\frac{\pi}{2}$.

We have $f\left(\frac{\pi}{2}\right)=1-\cos \left(\frac{\pi}{2}\right)=1$

$$
f^{\prime}(\theta)=\sin (\theta) \Rightarrow f^{\prime}\left(\frac{\pi}{2}\right)=1
$$

So $\left.\quad \frac{d y}{d x}\right|_{\theta=\frac{\pi}{2}}=\frac{f^{\prime}\left(\frac{\pi}{2}\right) \sin \left(\frac{\pi}{2}\right)+f\left(\frac{\pi}{2}\right) \cos \left(\frac{\pi}{2}\right)}{f^{\prime}\left(\frac{\pi}{2}\right) \cos \left(\frac{\pi}{2}\right)-f\left(\frac{\pi}{2}\right) \sin \left(\frac{\pi}{2}\right)}=\frac{1 \cdot 1+1 \cdot 0}{1 \cdot 0-1 \cdot 1}=-1$.

At $\theta=\frac{\pi}{2}$, the curve passes through

$$
\begin{aligned}
& x=f\left(\frac{\pi}{2}\right) \cos \left(\frac{\pi}{2}\right)=0 \\
& y=f\left(\frac{\pi}{2}\right) \sin \left(\frac{\pi}{2}\right)=1
\end{aligned}
$$

So the tangent line has equation:

$$
y=-x+1
$$

