Rutgers University
Math 152

Sections 11.3, 11.4: Polar Coordinates - Worksheet

1. Convert the following Cartesian equations to polar.
(a) $y=11$.
(c) $(x-3)^{2}+y^{2}=9$.
(e) $x^{2}+y^{2}+x y=2$.
(b) $x+y=0$.
(d) $y=7+2 x$.
(f) $y^{2}=3 x^{2}$.
2. Convert the following polar equations to Cartesian. Then describe the graph.
(a) $r=-7 \sec (\theta)$.
(c) $\theta=\frac{\pi}{6}$.
(e) $r=5 \sin (\theta)$.
(b) $r=\frac{5}{3 \sin (\theta)-4 \cos (\theta)}$.
(d) $r=3 \cot (\theta) \csc (\theta)$.
(f) $r=2 \cos (\theta)+6 \sin (\theta)$.
3. For each the following polar curves, identify the symmetries and sketch the graph.
(a) $r=9$.
(c) $r=3 \sin (2 \theta)$.
(e) $r=1-\cos (\theta)$.
(b) $r=8 \cos (\theta)$.
(d) $r=5 \cos (5 \theta)$.
(f) $r=\sqrt{3}+2 \sin (\theta)$.
4. Find an equation of the tangent line to the following polar curves at the given value of θ.
(a) $r=\cos (3 \theta), \theta=\frac{\pi}{4}$.
(b) $r=1+2 \sin (\theta), \theta=\frac{\pi}{6}$.
