Rutgers University Math 152

Sections 11.5: Areas and Lengths in Polar Coordinates - Worksheet

- 1. Find the areas of the given regions.
 - (a) The region shared by the circles $r = 2\sin(\theta)$ and $r = 2\cos(\theta)$.
 - (b) The region contained inside the leaves of the rose $r = 6\sin(2\theta)$ and outside the circle r = 3.
 - (c) The region inside the cardioid $r = 1 + \sin(\theta)$ and below the line $x = \sqrt{3}y$.
 - (d) The region inside the circle $r = \cos(\theta)$ and outside the cardioid $r = 1 \cos(\theta)$.
 - (e) The region shared by one leaf of the rose $r = 2\cos(3\theta)$ and the circle r = 1.
- 2. Consider the region \mathcal{R} contained in the circle $r = 4\cos(\theta)$ to the right of the line x = 3.
 - (a) Find the area of the region \mathcal{R} using integration with respect to x.
 - (b) Find the area of the region \mathcal{R} using integration with respect to y.
 - (c) Find the area of the region \mathcal{R} using integration with respect to θ .
- 3. Find the lengths of the given polar curves.

(a)
$$r = \sqrt{1 + \cos(2\theta)}, \ 0 \le \theta \le \frac{\pi}{2}$$

(b) $r = \frac{2}{1 - \cos(\theta)}, \ \frac{\pi}{2} \le \theta \le \pi.$
(c) $r = e^{3\theta}, \ 0 \le \theta \le \pi.$