ctions	5.8	, 5.6, 8.1 Review of Integration		
Learn	ing	Goals:		
	§5.	The Definite Integral User grade Backland		
		5.3.1 Use even/odd symmetry to integrate functions on the interval [-a,a] 5.6:65	5.6: 65	
		5.3.2 Use the Mean Value Theorem for Integrals to find the average value of a function over an interval5.3: 55, 59		
<u> </u>	§5.:	Indefinite Integrals and the Substitution Method		
		Learning Goal Homework Problems		
		5.5.1 Use substitution to simplify an indefinite integral of a composite function 5.5: 3,4,6,7,8,9,21,22,23,25,43,4	5.5: 3,4,6,7,8,9,21,22,23,25,43,45,46,47,48,51,55,61,64,66	
		5.5.2 Use substitution to evaluate an indefinite/a definite 5.5: 9,22,25 5.5.3. Use substitution to find an indefinite/a definite integral 5.5: 4,6,55,61,64,66	5.5: 9,22,25	
		of ratio of functions 5.5.4,0,53,01,04,00 5.5.4 Use substitution to find an indefinite/a definite integral involving composite compositions 5.5: 51,61	5.5: 51,61	
		5.5.5 Use substitution to evaluate an indefinite/a definite integral with ln(x) and 1/x 5.5: 55,		
		5.5.6 Use substitution to evaluate an indefinite/a definite integral with radicals and exponents 5.5: 3,6,21,43,45,46,47,64,6	6	
		5.5.7 Use substitution to evaluate an indefinite/a definite integral with an inverse trigonometric function5.5: 61,64,66		
		5.5.8 Use substitution to evaluate an indefinite/a definite integral with a composite function with a polynomial5.5: 4,23,443,45,46,47,48		
	§5.	Definite Integral Substitutions and the Area Between Curves		
		5.6.1 Draw the given curves/lines and indicate the specific region in a given problem 5.6: 75,98,101,107		
		5.6.2 Find the area of a region bounded between curves/lines on a given interval 5.6: 49,53,55,57,59,60,62,75	,87,98,101,109	
		5.6.3 Find the area of a region bounded by two functions that cross twice 5.6: 55,57,62		
		5.6.4 Find the area of a region bounded by two functions that cross more than twice5.6: 55,62,71		
		5.6.5 Solve area problems where on some interval f>g and on other interval, g>f.5.6: 62, 111,103		
-		5.6.6 Solve area problem with integration with respect to y. 5.6: 57,59,85		

