Sections 5.5, 5.6, 8.1

Learning Goals:

§5.3 The Definite Integral

	Learning Goal	Homework Problems
	5.3.1 Use even/odd symmetry to integrate functions on the interval $[-\mathrm{a}, \mathrm{a}]$	$5.6: 65$
	5.3.2 Use the Mean Value Theorem for Integrals to find the average value of a function over an interval	$5.3: 55,59$

§5.5 Indefinite Integrals and the Substitution Method

Learning Goal	Homework Problems
5.5.1 Use substitution to simplify an indefinite integral of a composite function	5.5: \|3,4,6,7,8,9,21,22,23,25,43,45,46,47,48,51,55,61,64,66
5.5.2 Use substitution to evaluate an indefinite/a definite integral with mixed trigonometric functions	5.5: 9,22,25
5.5.3. Use substitution to find an indefinite/a definite integral of ratio of functions	5.5: 4,6,55,61,64,66
5.5.4 Use substitution to find an indefinite/a definite integral involving composite exponential functions	5.5: 51,61
5.5.5 Use substitution to evaluate an indefinite/a definite integral with $\ln (x)$ and $1 / x$	5.5: 55,
5.5.6 Use substitution to evaluate an indefinite/a definite integral with radicals and exponents	5.5: 3,6,21,43,45,46,47,64,66
5.5.7 Use substitution to evaluate an indefinite/a definite integral with an inverse trigonometric function	5.5: 61,64,66
5.5.8 Use substitution to evaluate an indefinite/a definite integral with a composite function with a polynomial	5.5: 4,23,443, 45,46,47,48
§5.6 Definite Integral Substitutions and the Area Between Curves	
Learning Goal	Homework Problems
5.6.1 Draw the given curves/lines and indicate the specific region in a given problem	5.6: 75,98,101,107
5.6.2 Find the area of a region bounded between curves/lines on a given interval	5.6: 49,53,55,57,59,60,62,75,87,98,101,109
5.6.3 Find the area of a region bounded by two functions that cross twice	5.6: 55,57,62
5.6.4 Find the area of a region bounded by two functions that cross more than twice	5.6: 55,62,71
5.6.5 Solve area problems where on some interval $f>g$ and on other interval, $g>f$.	5.6: 62, 111,103
5.6.6 Solve area problem with integration with respect to y .	5.6: 57,59,85

Conceptual introduction: What is an integral?

vertical strip at x
$\int_{a}^{b} f(x) d x$ represents the sum of areas of thin vertical strips under the graph of f.

The typical strip at x has:

- length $f(x)$
- width $d x$
- net area $=f(x) d x$

$$
\int_{a}^{b} \frac{\text { area of }}{f(x) d x}^{\text {strip }}
$$

$$
=\text { "sum" of net areas of all }
$$

$$
=\text { net area between } y=f(x)
$$ and x-axis on $[a, b]$.

To compute definite integrals in practice, we often use the Fundamental Theorem of Calculus:

If f is continuous on $[a, b]$ and F is an antiderivative of F on $[a, b]$, then:

$$
\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)
$$

Examples: 1) Calculate the average value of $f(x)=\frac{1}{4+x^{2}}$ on $[0,2]$.

Reminder: average value of f on $[a, b]$

$$
a v(f)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Here, we get

$$
\begin{aligned}
\operatorname{av}(f) & =\frac{1}{2-0} \int_{0}^{2} \frac{d x}{4+x^{2}} \\
& =\frac{1}{2}\left[\frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2} \quad\left(\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c\right) \\
& =\frac{1}{4}\left(\tan ^{-1}\left(\frac{2}{2}\right)-\tan ^{-1}\left(\frac{0}{2}\right)\right) \\
& =\frac{1}{4} \cdot \frac{\pi}{4}=\frac{\pi}{16}
\end{aligned}
$$

2) Evaluate $\int \frac{d x}{\sqrt{8-2 x-x^{2}}}$.

$$
\begin{aligned}
\int \frac{d x}{\sqrt{8-2 x-x^{2}}} & =\int \frac{d x}{\sqrt{9-(x+1)^{2}}} \quad \text { (complete the square) } \\
& =\int \frac{d u}{\sqrt{9-u^{2}}} \quad \begin{array}{l}
u-\operatorname{sub} \\
\\
\end{array}=\sin ^{-1}\left(\frac{u}{3}\right)+C \quad\left(\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\sin ^{-1}\left(\frac{u}{a}\right)+c\right) \\
& =\sin ^{-1}\left(\frac{x+1}{3}\right)+C \quad
\end{aligned}
$$

3) Evaluate $\int \frac{d x}{(7+\sqrt{x})^{3}}$.

We can use the substitution $u=2+\sqrt{x}$.

$$
\begin{aligned}
& \int \frac{d x 2 \sqrt{x} d u}{(7+\sqrt{x})^{3}} \\
& \text { u-sub } \\
& u=7+\sqrt{x} \\
& d u=\frac{d x}{2 \sqrt{x}} \Rightarrow d x=2 \sqrt{x} d u \\
& =\int \frac{2 \sqrt{x} d u}{u^{3}} \\
& u=7+\sqrt{x} \Rightarrow \sqrt{x}=u-7 \\
& =\int \frac{2(u-7)}{u^{3}} d u \\
& =\int 2\left(u^{-2}-7 u^{-3}\right) d u \\
& =2\left(\frac{u^{-1}}{-1}-7 \frac{u^{-2}}{-2}\right)+C \\
& =2\left(\frac{7}{2(7+\sqrt{x})^{2}}-\frac{1}{7+\sqrt{x}}\right)+C
\end{aligned}
$$

needs to be expressed in terms of u
4) $\int_{-1}^{1} \frac{x^{5}}{x^{2}+1} d x$

Observe: . the integrand is odd: $f(-x)=-f(x)$

- the interval of integration is centered at 0 .

So $\int_{-1}^{1} \frac{x^{5}}{x^{2}+1} d x=0$

If f is odd, $\int_{-a}^{a} f(x) d x=0$

If f is even, $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$

Computing areas of regions in the $x y$-plane:

1) Calculate the area of the region below.

We compute the area using vertical strips.

$$
\text { So Area } \begin{aligned}
& =\int_{-1}^{0}\left(\left(x^{3}-2 x^{2}-x\right)-2 x\right) d x+\int_{0}^{3}\left(2 x-\left(x^{3}-2 x^{2}-x\right)\right) d x \\
& =\int_{-1}^{0}\left(x^{3}-2 x^{2}-3 x\right) d x+\int_{0}^{3}\left(3 x-x^{3}+2 x^{2}\right) d x \\
& =\left[\frac{x^{4}}{4}-\frac{2 x^{3}}{3}-\frac{3 x^{2}}{2}\right]_{-1}^{0}+\left[\frac{3 x^{2}}{2}-\frac{x^{4}}{4}+\frac{2 x^{3}}{3}\right]_{0}^{3} \\
& =0-\left(\frac{(-1)^{4}}{4}-\frac{2(-1)^{3}}{3}-\frac{3(-1)^{2}}{2}\right)+\left(\frac{3(3)^{2}}{2}-\frac{34}{4}+\frac{2 \cdot 3^{3}}{3}\right)-0 \\
& =\frac{71}{6} \text { square units }
\end{aligned}
$$

2) Compute the area of the region below using:

i) integration with respect to y
ii) integration with respect to x
i) Integration with respect to y : we use horizontal strips.

The horizontal strip at y

$$
\text { has } \begin{aligned}
\text { length } & =x_{\text {right }}-x_{\text {left }} \\
& =(1-y)-\left(y^{2}-1\right)
\end{aligned}
$$

Upper bound of integration $=$ largest y-value in region $=1$ Lower bound of integration $=$ least y-value in region $=-2$

So

$$
\begin{aligned}
A & =\int_{-2}^{1}\left[(1-y)-\left(y^{2}-1\right)\right] d y \\
& =\int_{-2}^{1}\left(2-y-y^{2}\right) d y \\
& =\left[2 y-\frac{y^{2}}{2}-\frac{y^{3}}{3}\right]_{-2}^{1} \\
& =\left(2-\frac{1^{2}}{2}-\frac{1^{3}}{3}\right)-\left(2(-2)-\frac{(-2)^{2}}{2}-\frac{(-2)^{3}}{3}\right)
\end{aligned}
$$

$$
=\frac{9}{2} \text { square units }
$$

ii) Integration with respect to x : we use vertical strips We need to express the parabola as a function of x :

$$
x=y^{2}-1 \Rightarrow \underbrace{y=\sqrt{x+1}}_{\text {upper branch }} \text { or } \underbrace{y=-\sqrt{x-1}}_{\text {lower branch }}
$$

We will have to use a sum of 2 integrals because the curve bounding the top of the strip is not the same in the entire region. (The region is NOT VERTICALLY SIMPLE.)

If $-1 \leqslant x \leqslant 0$, top curve is $y=\sqrt{x+1}$,

$$
\begin{aligned}
\Rightarrow \text { length of strip }=y_{\text {top }}-y_{\text {bot }} & =\sqrt{x+1}-(-\sqrt{x+1}) \\
& =2 \sqrt{x+1}
\end{aligned}
$$

If $0 \leqslant x \leqslant 3$, the top curve is $y=-x+1$.

$$
\begin{aligned}
\Rightarrow \text { length of strip }=y_{\text {top }}-y_{\text {bot }} & =(-x+1)-(-\sqrt{x+1}) \\
& =\sqrt{x+1}-x+1
\end{aligned}
$$

So

$$
\begin{aligned}
A & =\int_{-1}^{0} 2 \sqrt{x+1} d x+\int_{0}^{3}(\sqrt{x+1}-x+1) d x \\
& =\left[\frac{4}{3}(x+1)^{3 / 2}\right]_{-1}^{0}+\left[\frac{2}{3}(x+1)^{3 / 2}-\frac{x^{2}}{2}+x\right]_{0}^{3} \\
& =\frac{4}{3}\left(1^{3 / 2}-0^{3 / 2}\right)+\frac{2}{3}\left(4^{3 / 2}-1^{3 / 2}\right)-\frac{3^{2}}{2}+3
\end{aligned}
$$

$$
=\frac{9}{2} \text { square units }
$$

we obtain the same result as (i).

Remark: in this problem, using a y-integral is easier because all horizontal strips are bounded by the same left curve and the same right curve: we say that the region is HoRizON TALLY SIMPLE.

Practice:

1) Calculate the following integrals.
i) $\int_{0}^{1 / 4} \frac{e^{\sin ^{-1}(2 x)}}{\sqrt{1-4 x^{2}}} d x$
ii) $\int \tan (3 t)^{8} \sec (3 t)^{2} d t$
2) Express the areas of the regions A, B below using:
i) an x-integral
ii) a y-integral

Solutions

1) i) We substitute $u=\sin ^{-1}(2 x)$

$$
\begin{aligned}
& \int_{0}^{1 / 4} \frac{e^{\pi / 6} \sin ^{-1}(2 x)}{\sqrt{1-4 x^{2}}} d x \frac{d u}{2} \\
& =\int_{0}^{\pi / 6} \frac{e^{u}}{2} d u \\
& =\left[\frac{e^{u}}{2}\right]_{0}^{\pi / 6}=\frac{e^{\pi / 6}-1}{2}
\end{aligned}
$$

$$
u-s u b
$$

$$
\begin{array}{ll}
u=\sin ^{-1}(2 x) & x=0 \Rightarrow u=0 \\
d u=\frac{2 d x}{\sqrt{1-4 x^{2}}} & x=1 / 4 \Leftrightarrow u=\frac{\pi}{6} \\
\Rightarrow \frac{d x}{\sqrt{1-4 x^{2}}}=\frac{d u}{2} &
\end{array}
$$

ii) We substitute $u=\tan (3 t)$.

$$
\begin{aligned}
& \int \tan (3 t)^{8} \sec (3 t)^{2} d t \frac{d u}{3}
\end{aligned} \begin{aligned}
& u-\operatorname{sub} \\
& d u=38 \\
& \Rightarrow \tan \\
& \Rightarrow \int \frac{1}{3} u^{8} d u \\
& =\frac{1}{27} u^{9}+C=\frac{1}{27} \tan (3 t)^{9}+C
\end{aligned}
$$

2) i) Using an x-integral/vertical strips

For A, the vertical strip at x has length $y_{\text {top }}-y_{\text {bot }}=9-e^{2 x}$
So $A=\int_{0}^{\ln (3)}\left(9-e^{2 x}\right) d x$

For B, the vertical strip at x has length $y_{\text {top }}-y_{\text {bot }}=e^{2 x}-0$
So $B=\int_{0}^{\ln (3)} e^{2 x} d x$
ii) Using a y-integral/horizontal strips:

Express the curve as a function of y :

$$
y=e^{2 x} \Rightarrow 2 x=\ln (y) \Rightarrow x=\frac{\ln (y)}{2}
$$

For A, the horizontal strip at y has length $x_{\text {right - }}$ 権ft

$$
=\frac{\ln (y)}{2}-0
$$

So $A=\int_{1}^{9} \frac{\ln (y)}{2} d y$

For B, we have 2 bounding curves on the left:

- for $0 \leqslant y \leqslant 1$, the curve bounding on the left is $x=0$, so the strip has length $x_{\text {right }}-x_{\text {eft }}=\ln (3)-0$
- for $1 \leqslant y \leqslant 9$, the curve bounding on the left is $x=\frac{\ln (y)}{2}$, so the strip has length

$$
=\ln (3)-\frac{\ln (y)}{2}
$$

So $B=\int_{0}^{1} \ln (3) d y+\int_{1}^{9}\left(\ln (3)-\frac{\ln (y)}{2}\right) d y$.

