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Learning Goals



What is an integral
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To compute definite integrals in practice we often
use the Fundamental Theorem of Calculus

If f is continuous on a b and F is an

antiderivative of F on a b then
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Examples 1 Calculate the average value of fix at
on 0,2

Reminder average value of f on Laib
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Computing areas of regions in the xy plane

1 Calculate the area of the region below
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Wecompute the area using vertical strips
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2 Compute the area of the region below using

x g i integration with respect to

1
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i Integration with respect to y we use horizontal strips

Ya The horizontal strip at yY
has length right left
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2 square units

in Integration with respect to x we use verticalstrips

We need to express the parabola as a function of x

x ga i g n Iif
y we will have to use a sum of

2 integrals because the curve

bounding the top of the strip is
x not the same in the entire regionµ.jop gjjctnengionisnetueaicn.ay
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I square units we obtain the same

result as i

Remark in this problem using a g integral is
easier because all horizontal strips are

bounded by the same left curve and the
same right curve we say that the region
is HORIZONTALLY SIMPLE

Practice

1 Calculate the following integrals

i esin 12x
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2 Express the areas of the regions AB below using
i an x integral
in a g integral
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Solutions

1 i We substitute u sin 2x

g
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ii We substitute a tan E
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2 i Using an x integral vertical strips
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For B the vertical strip at x has length yep Ybor et o

So B detox

in Using a g integral horizontal strips

Express the curve as a function of y
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For A the horizontal strip at y has length right Heft
hall o

so A S 1h12 dy

For B we have 2 bounding curves on the left
for of yet the curve bounding on the left is
x o so the strip has length right Heft In13 0

for If ye 9 the curve bounding on the left is
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So B f in 3 dy t f in 3 1 dy


