Rutgers University Math 152

Sections 5.5, 5.6, 8.1: Review of Integration - Worksheet

1. Evaluate the following antiderivatives.

(a)
$$\int \frac{dx}{\sqrt{8x - x^2}}$$
 (b) $\int \frac{\tan^{-1}(t)^3}{1 + t^2} dt$ (c) $\int \frac{\tan(3\ln(x))}{x} dx$

- 2. For each of the regions described below (i) sketch the region, clearly labeling the curves and their intersection points, (ii) calculate the area of the region using an x-integral and (iii) calculate the area of the region using a y-integral.
 - (a) The region to the right of the parabola $y = 1 (x 2)^2$, below the line y = 1 and to the left of the line x 2y = 3.
 - (b) The region bounded by the curves y = 2x and $y = \sqrt[3]{32x}$.
 - (c) The region bounded by the curves $y = \frac{4}{x+2}$ and y = 3 x.
- 3. Calculate the area of the regions described below.
 - (a) The region bounded by the parabola $x = (y+3)^2 4$ and the line x = 3y + 9.
 - (b) The region bounded by $y = \frac{4}{3+x^2}$ and y = 1.
 - (c) The region bounded by $y = 2\ln(x+1)$, the x-axis and the line x = 4.
 - (d) The region to the right of the y-axis, above the graph of $y = \sec(x)^2$ and below the graph of $y = 2 \sec(x)$.
- 4. Suppose that f is an **even** function such that

$$\int_{-9}^{5} f(x)dx = -13 \text{ and } \int_{0}^{9} f(x)dx = 4.$$

Evaluate the definite integrals below.

(a)
$$\int_{-9}^{9} f(x)dx$$
 (b) $\int_{0}^{5} (4x - 3f(x))dx$ (c) $\int_{-3}^{3} xf(x)dx$ (d) $\int_{0}^{3} xf(x^{2})dx$

5. Find the average value of the following functions on the given interval.

(a)
$$f(x) = \frac{3}{\sqrt{100 - x^2}}$$
 on $[0, 5]$. (b) $f(x) = x\sqrt[3]{3x - 7}$ on $[2, 5]$.