Sections 5.5, 5.6, 8.1: Review of Integration - Worksheet

1. Evaluate the following antiderivatives.
(a) $\int \frac{d x}{\sqrt{8 x-x^{2}}}$
(b) $\int \frac{\tan ^{-1}(t)^{3}}{1+t^{2}} d t$
(c) $\int \frac{\tan (3 \ln (x))}{x} d x$
2. For each of the regions described below (i) sketch the region, clearly labeling the curves and their intersection points, (ii) calculate the area of the region using an x-integral and (iii) calculate the area of the region using a y-integral.
(a) The region to the right of the parabola $y=1-(x-2)^{2}$, below the line $y=1$ and to the left of the line $x-2 y=3$.
(b) The region bounded by the curves $y=2 x$ and $y=\sqrt[3]{32 x}$.
(c) The region bounded by the curves $y=\frac{4}{x+2}$ and $y=3-x$.
3. Calculate the area of the regions described below.
(a) The region bounded by the parabola $x=(y+3)^{2}-4$ and the line $x=3 y+9$.
(b) The region bounded by $y=\frac{4}{3+x^{2}}$ and $y=1$.
(c) The region bounded by $y=2 \ln (x+1)$, the x-axis and the line $x=4$.
(d) The region to the right of the y-axis, above the graph of $y=\sec (x)^{2}$ and below the graph of $y=2 \sec (x)$.
4. Suppose that f is an even function such that

$$
\int_{-9}^{5} f(x) d x=-13 \text { and } \int_{0}^{9} f(x) d x=4
$$

Evaluate the definite integrals below.
(a) $\int_{-9}^{9} f(x) d x$
(b) $\int_{0}^{5}(4 x-3 f(x)) d x$
(c) $\int_{-3}^{3} x f(x) d x$
(d) $\int_{0}^{3} x f\left(x^{2}\right) d x$
5. Find the average value of the following functions on the given interval.
(a) $f(x)=\frac{3}{\sqrt{100-x^{2}}}$ on $[0,5]$.
(b) $f(x)=x \sqrt[3]{3 x-7}$ on $[2,5]$.

