Section 6.1: Volume by Cross-Sections - Worksheet

1. Consider the region \mathcal{R} in the first quadrant bounded by the curve $x=4-(y-1)^{2}$.
(a) Sketch the region. Make sure to clearly label the curve and its intercepts.
(b) A solid has base \mathcal{R} and cross-sections perpendicular to the y-axis. Calculate the volume of the solid if the cross-sections are (i) semi-circles with diameter in the base and (ii) equilateral triangles with a side in the base.
(c) A solid has base \mathcal{R} and its cross-sections perpendicular to the x-axis are isosceles right triangles with hypotenuse in the base. Calculate the volume of the solid.
(d) Calculate the volume of the solid of revolution obtained by revolving \mathcal{R} about (i) the y-axis and (ii) the line $y=-2$.
2. Use the method of disks/washers to calculate the volume of the solids of revolutions obtained by revolving the regions described below about the given axis.
(a) The region below the graph of $y=\ln (x)$ on $1 \leqslant x \leqslant 3$ revolved about the line $x=3$.
(b) The region below the graph of $y=\frac{1}{\sqrt{25+4 x^{2}}}$ on $0 \leqslant x \leqslant \frac{5}{2}$ revolved about the x-axis.
(c) The region bounded by $y=e^{x}, y=4-e^{x}$ and the coordinate axes revolved about the line $y=4$.
(d) The region below the graph of $y=2 \sin ^{-1}\left(x^{2}\right)$ on $0 \leqslant x \leqslant 1$ revolved about the y-axis.
3. Consider the region \mathcal{R} shaded in the figure below.

Use the method of washers to set-up integrals that compute the volume of the solid obtained by revolving \mathcal{R} about the line
(a) $x=2$,
(b) $y=3$,
(c) $x=-4$,
(d) $y=-2$.

You do not need to evaluate the integrals.

