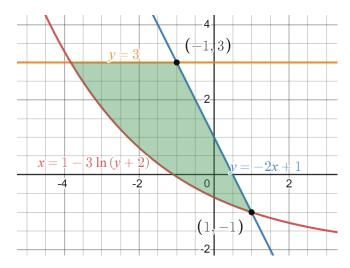
Rutgers University Math 152

Section 6.1: Volume by Cross-Sections - Worksheet

- 1. Consider the region \mathcal{R} in the first quadrant bounded by the curve $x = 4 (y 1)^2$.
 - (a) Sketch the region. Make sure to clearly label the curve and its intercepts.
 - (b) A solid has base \mathcal{R} and cross-sections perpendicular to the *y*-axis. Calculate the volume of the solid if the cross-sections are (i) semi-circles with diameter in the base and (ii) equilateral triangles with a side in the base.
 - (c) A solid has base \mathcal{R} and its cross-sections perpendicular to the *x*-axis are isosceles right triangles with hypotenuse in the base. Calculate the volume of the solid.
 - (d) Calculate the volume of the solid of revolution obtained by revolving \mathcal{R} about (i) the y-axis and (ii) the line y = -2.
- 2. Use the method of disks/washers to calculate the volume of the solids of revolutions obtained by revolving the regions described below about the given axis.
 - (a) The region below the graph of $y = \ln(x)$ on $1 \le x \le 3$ revolved about the line x = 3.
 - (b) The region below the graph of $y = \frac{1}{\sqrt{25+4x^2}}$ on $0 \le x \le \frac{5}{2}$ revolved about the x-axis.
 - (c) The region bounded by $y = e^x$, $y = 4 e^x$ and the coordinate axes revolved about the line y = 4.
 - (d) The region below the graph of $y = 2\sin^{-1}(x^2)$ on $0 \le x \le 1$ revolved about the y-axis.
- 3. Consider the region \mathcal{R} shaded in the figure below.



Use the method of washers to set-up integrals that compute the volume of the solid obtained by revolving \mathcal{R} about the line

(a)
$$x = 2$$
, (b) $y = 3$, (c) $x = -4$, (d) $y = -2$.

You do not need to evaluate the integrals.