Volume by Shells

Learning Goals:

Learning Goal	Homework Problems
6.2.1 Set and evaluate an x or a y integral for a volume of revolution of a region bounded by a unique function on an interval about the x or the y axis using the method of cylindrical shells	6.2: 1,3,5,9,13,17,21,23,27,47
6.2.2 Set and evaluate an x or a y integral for a volume of revolution of a region bounded by functions that cross about the x or the y axis using the method of cylindrical shells	6.2: 11,35
6.2.3 Set and evaluate an integral for a volume of revolution of a given region about the line $\mathrm{x}=$ nonzero \# or $\mathrm{y}=$ nonzero\# \# using the method of cylindrical shells	6.2: 23,27
6.2.4 Set and evaluate integrals for the same volume of revolution using the disk/washer and the cylindrical shells methods	6.2: 29,37,39
6.2.5 Set and evaluate an x integral and a y -integral for volume of the same solid	6.2: 37,39
6.2.6 Set and evaluate the volume of a solid that is described by words and no functions are given	6.2: 41,43,49

Conceptual introduction: in 6.1, we computed volumes using cross-sections. This section: we use nested shells.

Consider the solid obtained by revolving the region below $y=f(x)$ about the y-axis.

We could try to use washers, but we would need to solve $y=f(x)$ for x (so find $x=f^{-1}(y)$) which could be difficult.
We use shells instead.
revolving this strip about the y-axis will create a shell.

$$
\begin{aligned}
\text { Volume of the shell } & =2 \pi \text { (shell radius)(shell height)(thickness) } \\
& =2 \pi x f(x) d x
\end{aligned}
$$

So the volume of the solid is $V=\int_{a}^{b} 2 \pi x f(x) d x$

General formula to memorize:

$$
V=\int_{a}^{b} 2 \pi r(x) h(x) d x \quad \text { with }\left\{\begin{array}{l}
r(x)=\text { shell radius } \\
h(x)=\text { shell height }
\end{array}\right.
$$

Examples: 1) Let R be the region bounded by the x-axis, the y-axis and $y=2-2 x^{3}-x+x^{2}$. Find the volume of the solid obtained by revolving R about the y-axis.

To use disks, we slice perpendicularly to the axis of revolution (y-axis).
We would need to solve the equation $y=2-2 x^{3}-x+x^{2}$ for x to find the radius r, but this is not possible!
\Rightarrow So we use the shell method instead.
To find the dimensions of a typical
 the axis of revolution (y-axis).

- Shell radius = distance between axis of revolution and strip

$$
\Rightarrow r(x)=x
$$

- Shell height $=$ length of strip

$$
\Rightarrow h(x)=2-2 x^{3}-x+x^{2}
$$

$$
\text { So } \begin{aligned}
V & =\int_{0}^{1} 2 \pi r(x) h(x) d x \\
& =\int_{0}^{1} 2 \pi x\left(2-2 x^{3}-x+x^{2}\right) d x \\
& =2 \pi \int_{0}^{1}\left(2 x-2 x^{4}-x^{2}+x^{3}\right) d x \\
& =2 \pi\left[x^{2}-\frac{2 x^{5}}{5}-\frac{x^{3}}{3}+\frac{x^{4}}{4}\right]_{0}^{1}=\frac{31 \pi}{30} \text { cubic units }
\end{aligned}
$$

2) Let R be the region bounded $y=2 \sqrt{x}$ and $y=x^{3 / 2}$. Set up an integral that computes the volume of the solid obtained by revolving R about the line $y=-1$ using
a) the shell method.
b) the washer method.
a) Shell method: strip parallel to the axis of revolution.

- Shell radius $=y-(-1)=y+1$
- Shell height $=y^{2 / 3}-\left(\frac{y}{2}\right)^{2}$
- Thickness = dy

So $V=\int_{0}^{2 \sqrt{2}} 2 \pi(y+1)\left(y^{2 / 3}-\left(\frac{y}{2}\right)^{2}\right) d y$
b) Washer method: strip perpendicular to the axis of revolution.

- Inner radius: $r_{\text {in }}(x)=x^{3 / 2}+1$
- Outer radius: $r_{\text {out }}(x)=2 \sqrt{x}+1$

So $\quad V=\int_{0}^{2} \pi\left[(2 \sqrt{x}+1)^{2}-\left(x^{3 / 2}+1\right)^{2}\right] d x$

How to decide between shells and washers?
\Rightarrow Find what is easier for strips between parallel or perpendicular to the axis of revolution.
Parallel \rightarrow use shells, Perpendicular \rightarrow use washers.
3) Consider the region pictured below. Calculate the volume of the solid obtained by revolving R about $x=2$.

Here, vertical strips are easier because we have a single bounding curve for the top and the bottom each.
\Rightarrow We use shells.

- Shell radius $=2-x$
- Shell height $=3-\frac{1}{1+x^{2}}$

$$
\begin{aligned}
\Rightarrow V & =\int_{0}^{1} 2 \pi(2-x)\left(3-\frac{1}{1+x^{2}}\right) d x=2 \pi \int_{0}^{1}\left(6-3 x-\frac{2}{1+x^{2}}+\frac{x}{1+x^{2}}\right) d x \\
& =2 \pi\left[6 x-\frac{3 x^{2}}{2}-2 \tan ^{-1}(x)+\frac{1}{2} \ln \left(1+x^{2}\right)\right]_{0}^{1} \\
& =\pi(9-\pi+\ln (2)) \text { cubic units. }
\end{aligned}
$$

Remark: we can still use washers with horizontal strips, but we need to use two integrals because there are two different curves bounding on the left: $x=0$ for $1 \leqslant y \leqslant 3$

$$
\begin{aligned}
& y=\frac{1}{x^{2}+1} \\
& \text { and } y=\frac{1}{x^{2}+1} \Rightarrow x=\sqrt{\frac{1}{y}-1} \text { for } \frac{1}{2} \leqslant y \leqslant 1 \text {. } \\
& \text { - } r_{\text {in }}(y)=2-1=1 \\
& \text { - } r_{\text {out }}(y)= \begin{cases}2-0=2 & \text { if } 1 \leqslant y \leqslant 3 \\
2-\sqrt{\frac{1}{y}-1} & \text { if } \frac{1}{2} \leqslant y \leqslant 1 .\end{cases} \\
& \Rightarrow V=\int_{\frac{1}{2}}^{1} \pi\left[\left(2-\sqrt{\frac{1}{y}-1}\right)^{2}-1^{2}\right] d y+\int_{1}^{3} \pi\left(2^{2}-1^{2}\right) d y
\end{aligned}
$$

4) Use the shell method to find the volume of a sphere of radius R.

The sphere is obtained by revolving the semi-circle $y=\sqrt{R^{2}-x^{2}}$ about the x-axis.

- Shell height $=x_{\text {right }}-x_{\text {left }}$

We solve $y=\sqrt{R^{2}-x^{2}}$ for x to find $x_{\text {eff }}$ and x inght

$$
\Rightarrow x= \pm \sqrt{R^{2}-y^{2}} \Rightarrow x_{\text {left }}=-\sqrt{R^{2}-y^{2}}, x_{\text {right }}=\sqrt{R^{2}-y^{2}}
$$

So shell height $=\sqrt{R^{2} \cdot y^{2}}-\left(-\sqrt{R^{2}-y^{2}}\right)$

$$
=2 \sqrt{R^{2}-y^{2}}
$$

- Shell radius $=y$

So $\quad V=\int_{0}^{R} 2 \pi y 2 \sqrt{R^{2}-y^{2}} d y$

$$
\begin{array}{ll}
u-s u b & \\
u=R^{2}-y^{2} & y=0 \Rightarrow u=R^{2} \\
d u=-2 y d y & y=R \Rightarrow u=0
\end{array}
$$

$$
\begin{aligned}
& =\int_{R^{2}}^{0} 2 \pi \sqrt{u}(-d u) \\
& =2 \pi\left[\frac{2}{3} u^{3 / 2}\right]_{0}^{R^{2}} \\
& =\frac{4 \pi R^{3}}{3}
\end{aligned}
$$

5) Let R be the region below the graph of $y=x \sec \left(\frac{\pi x^{3}}{4}\right)$ on the interval $[0,1]$.
Find the volume of the region obtained by revolving R about:
a) the y-axis
b) the x-axis
a) Revolution about the y-axis: we use shells.

- Shell radius: x
- Shell height : $x \sec \left(\frac{\pi x^{3}}{4}\right)$.

$$
\begin{aligned}
& x \quad V=\int_{0}^{1} 2 \pi x \times \sec \left(\frac{\pi x^{3}}{4}\right) d x \\
& =2 \pi \int_{0}^{1} \sec \left(\frac{\pi x^{3}}{4}\right) x^{2} d x \\
& \left.=2 \pi \int_{0}^{\pi / 4} \sec (u) \frac{4 d u}{3 \pi}\right)^{u}=\frac{\pi x^{3}}{4}, d u=\frac{3 \pi x^{2}}{4} d x \\
& =\frac{8}{3} \int_{0}^{\pi / 4} \sec (u) d x=\frac{4 d u}{3 \pi} \\
& =\frac{8}{3}[\ln (|\sec (u)+\tan (u)|)]_{0}^{\pi / 4} \\
& =\frac{8}{3} \ln (\sqrt{2}+1) \text { cubic units }
\end{aligned}
$$

b) Revolution about the x-axis: we use disks

- Disk radius: $x \sec \left(\frac{\pi x^{3}}{4}\right)$

$$
\begin{aligned}
& V=\int_{0}^{1} \pi\left(x \sec \left(\frac{\pi x^{3}}{4}\right)\right)^{2} d x \\
= & \pi \int_{0}^{1} \sec \left(\frac{\pi x^{3}}{4}\right)^{2} x^{2} d x \\
= & \left.\pi \int_{0}^{\pi / 4} \sec (u)^{2} \frac{4 d u}{3 \pi}\right)^{-\pi x^{3}} \frac{4}{4} \Rightarrow d u=\frac{3 \pi x^{2} d x=\frac{4 d u}{4} d x}{3 \pi} \\
= & \frac{4}{3} \int_{0}^{\pi / 4} \sec (u)^{2} d u \\
= & \frac{4}{3}[\tan (u)]_{0}^{\pi / 4} \\
= & \frac{4}{3} \text { cubic units. }
\end{aligned}
$$

6) Set-up an integral equal to the volume of the solid obtained by revolving the region below about the the line $y=8$
a) washers
b) shells.

a) Washers: strips perpendicular to the the axis, so we use an x-integral.

- $r_{\text {out }}=8-0=6$
- $r_{\text {in }}=8-e^{x-2}$

So $\quad V=\int_{2}^{4} \pi\left(8^{2}-\left(8-e^{x-2}\right)^{2}\right) d x$
b) Shells: strips parallel to the the axis, so we use a y-integral.

- Shell radius $=8-y$.
- Shell height : we have 2 left bounding curves:

$$
\begin{aligned}
\text { - if } 0 \leqslant y \leqslant 1, \text { height } & =4-2=2 \\
\text { - if } 1 \leqslant y \leqslant e^{2}, \quad \text { height } & =4-(\ln (y)+2) \\
& =2-\ln (y)
\end{aligned}
$$

So $\quad V=\int_{0}^{1} 2 \pi(8-y)(2) d y+\int_{1}^{e^{2}} 2 \pi(8-y)(2-\ln (y)) d y$

