Section 6.2

Volume by Shells

Learning Goals:

-		Learn	ing Goal							Hor	mework	Proble	ms						
		6.2.1 Set and evaluate an x or a y integral for a volume of revolution of a region bounded by a unique function on an interval about the x or the y axis using the method of cylindrical shells									6.2: 1,3,5,9,13,17,21,23,27,47								
		6.2.2 S revolu the x c	6.2.2 Set and evaluate an x or a y integral for a volume of revolution of a region bounded by functions that cross about the x or the y axis using the method of cylindrical shells							6.2: 11,35									
		6.2.3 Set and evaluate an integral for a volume of revolution of a given region about the line x=nonzero # or y=nonzero# # using the method of cylindrical shells								6.2: 23,27									
		 6.2.4 Set and evaluate integrals for the same volume of revolution using the disk/washer and the cylindrical shells methods 6.2.5 Set and evaluate an x integral and a y-integral for volume of the same solid 6.2.6 Set and evaluate the volume of a solid that is described by words and no functions are given 									6.2: 29,37,39								
											6.2: 37,39 6.2: 41,43,49								
_																			
_																			
_																			-
_																			
_																			
_																			-
_																			-
_																			
_																			_

Conceptual introduction: in 6.1, we computed volumes using
cross-sections. This section: we use nested shells.
Consider the solid obtained by revolving the region
below
$$y = f(x)$$
 about the y-axis.
We could try to use washers, but
we would need to solve $y = f(x)$
for x (so find x = f⁻¹(y)) which
could be difficult.
We use shells instead.
revolving this strip about the y-axis will create a shell.
Volume of the shell = $2\pi (shell radius)(shell height)(thickness)$
= $2\pi \times f(x) dx$
So the volume of the solid is $V = \int_{a}^{b} 2\pi \times f(x) dx$
 $V = \int_{a}^{b} 2\pi \cdot (x)h(x) dx$ with $\begin{cases} r(x) = shell radius}{h(x) = shell radius}$

2) Let R be the region bounded
$$y = x \sqrt{1x}$$
 and $y = x^{3/2}$.
Set up an integral that computes the volume of the
solid obtained by revolving R about the line $y = -1$ using
a) the shell method.
b) the washer method.
c) Shell method: strip parallel to the axis of resolution.
d) $y = 31x$ $y = x^{3/2}$ • Shell radius $= y - (-1) = g + 1$
 $y = 31x$ $y = x^{3/2}$ • Shell radius $= y^{3/2} - (\frac{1}{2})^2$
• Thickness $= dy$
(a) Washer method: strip perpendicular to the axis of resolution.
d) $y = 21x$ $y = -1$ So $V = \int_{-2}^{21\pi} (y+1)(y^{3/2} - (\frac{1}{2})^2) dy$
b) Washer method: strip perpendicular to the axis of resolution.
d) $y = 21x$ $y = -1$ So $V = \int_{-2}^{21\pi} (y+1)(y^{3/2} - (\frac{1}{2})^2) dy$
b) Washer method: strip perpendicular to the axis of resolution.
d) $y = 21x$ $y = x^{3/2}$ • Inner radius: $r_{in}(x) = x^{3/2} + 1$
 $x^{3/2}$ $x^{3/2}$ • Inner radius: $r_{in}(x) = x^{3/2} + 1$
 $x^{3/2}$ $y = x^{3/2}$ • $y = -1$
How to decide between shells and washers ?
 $= Find$ what is easier for strips between parallel or perpendicular
to the axis of revolution.
Parallel \rightarrow use shells, Perpendicular \rightarrow use washers.

