Section 6 Arc Lengrh

Conceptual introduction: We know how to compute the length of $\left(x_{1}, y_{1}\right)$ a line segment using the distance formula.

$$
L=\sqrt{\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}}
$$

In this section, we want to compute the length of an arc on a smooth curve.

Idea: break-up the curve into ting line segments and sum their lengths.



A typical tiny line segment looks like


$$
d s= \begin{cases}\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x & \binom{\text { factor out } d x}{y \text { as function of } x} \\ \sqrt{\left(\frac{d x}{d y}\right)^{2}+1} d y & \binom{\text { factor out } d y}{x \text { as function of } y}\end{cases}
$$

And $L=\int_{\text {curve }} d s$.

- Using an $x$-integral:


$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x
$$

valid if $\frac{d y}{d x}$ is continuous on $a \leq x \leq b$.

- Using a y-integral:


$$
L=\int_{c}^{d} \sqrt{\left(\frac{d x}{d y}\right)^{2}+1} d y=\int_{c}^{d} \sqrt{g^{\prime}(y)^{2}+1} d y
$$

valid if $\frac{d x}{d y}$ is continuous on $c \leqslant y \leqslant d$

Examples: 1) Find the length of the curve $y=2 x^{3 / 2}$ for $0 \leqslant x \leqslant 1$.

We have $\frac{d y}{d x}=3 x^{1 / 2}$, continuous on $[0,1]$.
So we can compute $L$ using integration with respect to $x$.

$$
\begin{aligned}
L & =\int_{0}^{1} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{0}^{1} \sqrt{1+9 x} d x \\
& =\int_{1}^{10} \sqrt{u} \frac{d u}{9}=\frac{1}{9}\left[\frac{2}{3} u^{3 / 2}\right]_{1}^{10}
\end{aligned}
$$

$$
\begin{aligned}
& u-\text { sub } \\
& \begin{array}{ll}
u=1+9 x & x=0 \Rightarrow u=1 \\
d u=9 d x & \quad x=1 \Rightarrow u=10 \\
\Rightarrow d x=\frac{1}{9} d u &
\end{array}
\end{aligned}
$$

$$
=\frac{2}{27}\left(10^{3 / 2}-1\right) \text { units }
$$


2) Find the length of $y=1+(x-3)^{2 / 3}$ for $3 \leqslant x \leqslant 4$

$\frac{d y}{d x}=\frac{2(x-3)^{-1 / 3}}{3}$ is not defined at $x=3 \quad$ (cusp).

So we cannot compute $L$ using an $x$-integral. We use a $y$-integral instead.

$$
\begin{aligned}
y=1+(x-3)^{2 / 3} & \Rightarrow(x-3)^{2 / 3}=y-1 \\
& \Rightarrow x-3=(y-1)^{3 / 2} \quad(\text { because } x-3 \geqslant 0 \text { if } 3 \leqslant x \leqslant 4) \\
& \Rightarrow x=3+(y-1)^{3 / 2} .
\end{aligned}
$$

So $\frac{d x}{d y}=\frac{3}{2}(y-1)^{1 / 2}$ is continuous on $1 \leqslant y \leqslant 2$.
So $L=\int_{1}^{2} \sqrt{\left(\frac{d x}{d y}\right)^{2}+1} d y=\int_{1}^{2} \sqrt{\frac{9}{4}(y-1)+1} d y=\int_{1}^{\frac{13}{2}} \frac{4}{9} \sqrt{u} d u$

$$
=\frac{4}{9}\left[\frac{2}{3} u^{3 / 2}\right]_{1}^{\frac{13}{2}}=\frac{8}{27}\left[\left(\frac{13}{2}\right)^{3 / 2}-1\right] \text { units }
$$

$$
u \text {-sub } u=\frac{9}{4}(y-1)+1
$$

3) Find the length of the curve $y=\frac{x^{2}}{2}-\frac{\ln (x)}{4}$ for $1 \leqslant x \leqslant 3$.

We have $\frac{d y}{d x}=x-\frac{1}{4 x}$ continuous on $[1,3]$, so we can compute $L$ using integration with respect to $x$.
Trick: try to write $1+\left(\frac{d y}{d x}\right)^{2}$ as a perfect square.

$$
\begin{aligned}
1+\left(\frac{d y}{d x}\right)^{2} & =1+\left(x-\frac{1}{4 x}\right)^{2}=1+x^{2}+\left(\frac{1}{4 x}\right)^{2}-2 x \frac{1}{4 x}=x^{2}+\left(\frac{1}{4 x}\right)^{2}+\frac{1}{2} \\
& =x^{2}+\left(\frac{1}{4 x}\right)^{2}+2 x \frac{1}{4 x}=\left(x+\frac{1}{4 x}\right)^{2} .
\end{aligned}
$$

So

$$
\begin{aligned}
L & =\int_{1}^{3} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{1}^{3} \sqrt{\left(x+\frac{1}{4 x}\right)^{2}} d x=\int_{1}^{3}\left(x+\frac{1}{4 x}\right) d x \\
& =\left[\frac{x^{2}}{2}+\frac{\ln (|x|)}{4}\right]_{1}^{3}=4+\frac{\ln (3)}{4} \text { units }
\end{aligned}
$$

4) Find the length of the curve $x=\frac{e^{3 y}+e^{-3 y}}{6}$ for $0 \leqslant y \leqslant 2$.

We have $\frac{d x}{d y}=\frac{3 e^{3 y}-3 e^{-3 y}}{6}=\frac{e^{3 y}-e^{-3 y}}{2}$ continuous for $0 \leqslant y \leqslant 2$. So we can use a $y$-integral.
Before we compute $L$, we try to write $1+\left(\frac{d x}{d y}\right)^{2}$ as a perfect square.

$$
\begin{aligned}
1+\left(\frac{d x}{d y}\right)^{2} & =1+\left(\frac{e^{3 y}-e^{-3 y}}{2}\right)^{2}=1+\frac{e^{6 y}+e^{-6 y}-2}{4}=\frac{e^{6 y}+e^{-6 y}+2}{4} \\
& =\left(\frac{e^{3 y}+e^{-3 y}}{2}\right)^{2}
\end{aligned}
$$

So $L=\int_{0}^{2} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y=\int_{0}^{2} \sqrt{\left(\frac{e^{2 y}+e^{-3 y}}{2}\right)^{2}}=\int_{0}^{2} \frac{e^{3 y}+e^{-3 y}}{2} d y$

$$
=\left[\frac{e^{3 y}-e^{-3 y}}{6}\right]_{0}^{2}=\frac{e^{6}-e^{-6}}{6} \text { units }
$$

5) Find the length of the curve $y=\ln (\sec (x)), 0 \leqslant x \leqslant \frac{\pi}{3}$.

We have $\frac{d y}{d x}=\tan (x)$, continuous on $\left[0, \frac{\pi}{3}\right]$, so we can use an $x$-integral.

$$
1+\left(\frac{d y}{d x}\right)^{2}=1+\tan (x)^{2}=\sec \left(x x^{2}\right.
$$

So

$$
\begin{aligned}
L & =\int_{0}^{\frac{\pi}{3}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{0}^{\frac{\pi}{3}} \sqrt{\sec (x)^{2}} d x=\int_{0}^{\frac{\pi}{3}}|\sec (x)| d x=\int_{0}^{\pi / 3} \sec (x) d x \\
& =[\ln (\sec (x)+\tan (x))]_{0}^{\frac{\pi}{3}}=\ln (2+\sqrt{3}) \text { units }
\end{aligned}
$$

Using the formula in reverse:
a) Find a curve $y=f(x)$ passing through $(1,2)$ with positive derivative whose length integral on $1 \leqslant x \leqslant 4$ is

$$
L=\int_{1}^{4} \sqrt{1+\frac{1}{4 x}} d x
$$

$$
\left.\left.\begin{array}{rl}
L & =\int_{1}^{4} \sqrt{1+\frac{1}{4 x}} d x \\
& =\int_{1}^{4} \sqrt{1+f^{\prime}(x)^{2}} d x
\end{array}\right\} \begin{array}{l}
\text { So } f^{\prime}(x)^{2}=\frac{1}{4 x} \\
\left|f^{\prime}(x)\right|=\frac{1}{2 \sqrt{x}} \quad \begin{array}{l}
\text { take } \sqrt{\text { a }} \sqrt{a^{2}}=|a|
\end{array} \\
f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \text { on both sitive derivative } \\
\text { so } f^{\prime}(x)>0 \text { and } \\
\left|f^{\prime}(x)\right|=f^{\prime}(x)
\end{array}\right\} \begin{aligned}
& f(x)=\sqrt{x}+c, c \text { constant. }
\end{aligned}
$$

To find $c$, we use $f(1)=2$

$$
\begin{aligned}
\sqrt{1}+c & =2 \\
c & =1
\end{aligned}
$$

So $f(x)=\sqrt{x}+1$
b) Find a curve $y=f(x)$ passing through $(1,-2)$ negative derivative whose length integral on $0 \leqslant x \leqslant 2$ is

$$
L=\int_{0}^{2} \sqrt{1+9 x^{8}} d x
$$

$$
\left.\begin{array}{rl}
L & =\int_{0}^{2} \sqrt{1+9 x^{8}} d x \\
& =\int_{0}^{2} \sqrt{1+f^{\prime}(x)^{2}} d x
\end{array}\right\} \text { So } \begin{aligned}
& f^{\prime}(x)^{2}=9 x^{8} \\
& \left|f^{\prime}(x)\right|=3 x^{4}
\end{aligned}
$$

$\int$ take $\sqrt{\text { a }}$ on both sides

$$
\left|f^{\prime}(x)\right|=3 x^{4}
$$

"negative derivative"

$$
\begin{aligned}
& f^{\prime}(x)=-3 x^{4} \quad \begin{array}{l}
\text { so } f^{\prime}(x)<0 \text { and } \\
\left|f^{\prime}(x)\right|=-f^{\prime}(x)
\end{array} \\
& f(x)=-\frac{3 x^{5}}{5} \quad c, \quad c \text { constant. }
\end{aligned}
$$

To find $c$, we use $f(1)=-2$

$$
\begin{aligned}
-\frac{3}{5}+c & =-2 \\
c & =-\frac{7}{5}
\end{aligned}
$$

So $f(x)=-\frac{3 x^{5}}{5}-\frac{7}{5}$

