		Arc Length		
Learni	ng Goals			
	Learning Goal		Homework Problems	
	6.3.1 Set and evalu- given curve	ate an x or a y integral for the length of a	6.3: 1,2,3,5,7,9,15,29,27,28	
	6.3.2 Find a curve	vith a given length integral or value	6.3: 25	

3) Find the length of the curve
$$y = \frac{x^2}{2} - \frac{h(x)}{4}$$
 for $1 \le x \le 3$.
We have $\frac{dy}{dx} = x - \frac{1}{4x}$ continuous on $[1,3]$, so use can compute
L using integration with respect to x.
Trick: try to write $1 + \left(\frac{dy}{dx}\right)^2$ as a perfect square.
 $1 + \left(\frac{dy}{dx}\right)^2 = 1 + \left(x - \frac{1}{4x}\right)^2 = 1 + x^2 + \left(\frac{1}{4x}\right)^2 - 2x \frac{1}{4x} = x^2 + \left(\frac{1}{4x}\right)^2 + \frac{1}{2}$
 $= x^2 + \left(\frac{1}{4x}\right)^4 + 3x \frac{1}{4x} = \left(x + \frac{1}{4x}\right)^3$.
So $L = \int_1^3 \sqrt{1 + \left(\frac{dy}{dx}\right)^3} \, dx = \int_1^3 \sqrt{(x + \frac{1}{4x})^2} \, dx = \int_1^3 (x + \frac{1}{4x}) \, dx$
 $= \left[\frac{x^2}{2} + \frac{\ln(|x|)}{4}\right]_1^3 = \frac{4 + \ln(3)}{4}$ units
4) Find the length of the curve $x = \frac{e^{\frac{10}{3}} + e^{\frac{23}{3}}}{6}$ for $0 \le y \le 2$.
We have $\frac{dx}{dy} = \frac{3e^{\frac{30}{3}} - 3e^{\frac{33}{3}}}{6} = \frac{e^{\frac{30}{3}} - e^{\frac{33}{2}}}{2}$ continuous for $0 \le y \le 2$.
Before we compute L, we try to write $1 + \left(\frac{dx}{dy}\right)^2$ as a perfect square.
 $1 + \left(\frac{dx}{dy}\right)^2 = 1 + \left(\frac{e^{\frac{30}{3}} - e^{\frac{33}{3}}}{4}\right)^2 = 1 + \frac{e^{\frac{69}{3} + e^{\frac{59}{3}}}{4}}{4} = \left(\frac{e^{\frac{30}{3} + e^{\frac{39}{3}}}{2}\right)^2$

$$= \left[\frac{e^{x_{y}} - e^{\frac{2y}{3}}}{6} \right]_{0}^{x} = \frac{e^{x} - e^{-6}}{6} \text{ units}$$
5) Find the length of the curve $y = h(sec(x))$, $0 \le x \le \frac{x}{3}$.
We have $\frac{dy}{dx} = \tan(x)$, continuous on $[0, \frac{x}{3}]$, s we can use on x . integral.
If $\left(\frac{dy}{dx}\right)^{2} = \frac{1 + \tan(x)^{2}}{2} = \sec(x)^{2}$
So $L = \int_{0}^{\frac{x}{3}} \sqrt{1+(\frac{dy}{dx})^{2}} dx = \int_{-\frac{x}{3}}^{\frac{x}{3}} \sqrt{sec(x)} dx = \int_{0}^{\frac{x}{3}} |sec(x)| dx = \int_{0}^{\frac{x}{3}} sec(x) dx$

$$= \left[\ln(sec(x) + \tan(x)) \right]_{0}^{\frac{x}{3}} = \frac{\ln(2+\sqrt{3})}{2} \text{ units}$$
Using the formula in reverse:
a.) Find a curve $y = f(x)$ passing through $(1, 2)$ with positive derivative whose length integral on $1 \le x \le 4$ is $L = \int_{-\frac{1}{2}}^{4} \sqrt{1+\frac{1}{4x}} dx$
 $L = \int_{-\frac{1}{2}}^{4} \sqrt{1+\frac{1}{4x}} dx$
 $\left| f'(x) \right| = \frac{1}{2\sqrt{x}}$ take $\int_{-\infty}^{\infty} on both side$
 $\left| f'(x) \right| = \frac{1}{2\sqrt{x}}$
 $\int_{0}^{0} positive derivative \left\{ f'(x) - \frac{1}{2\sqrt{x}} + \frac{1}{2} \right\}$

To find C, we use
$$f(1) = 2$$

 $\int i + C = 2$
C = 1
So $f(x) = \sqrt{x} + 1$
b) Find a curve $y = f(x)$ passing through $(1, -2)$ with
negative derivative whose length integral on $o \le x \le 2$ is
 $L = \int_{a}^{b} \sqrt{1 + 9x^{8}} dx$
 $L = \int_{a}^{b} \sqrt{1 + 9x^{8}} dx$
 $L = \int_{a}^{b} \sqrt{1 + 9x^{8}} dx$
 $f'(x) = -3x^{4}$ bake $\int i$ on both sides
 $f'(x) = -3x^{4}$ bake $\int i$ on both sides
 $f'(x) = -3x^{4}$ bake $\int i$ on both sides
 $f'(x) = -3x^{4}$ bake $\int i$ on both sides
 $f'(x) = -3x^{4}$ bake $\int i$ on both sides
 $f'(x) = -3x^{4}$ bake $\int i$ on both sides
 $f'(x) = -3x^{4}$ bake $\int i$ on both sides
 $f'(x) = -3x^{4}$ bake $\int i$ on both sides
 $f'(x) = -3x^{4}$ bake $\int i$ on both sides
 $f'(x) = -3x^{4}$ bake $\int i$ on both sides
 $f'(x) = -3x^{4}$ bake $\int i$ on both sides
 $f'(x) = -3x^{4}$ bake $\int i$ on both sides
 $f'(x) = -3x^{4}$ bake $\int i$ on both sides
 $f'(x) = -3x^{4}$ bake $\int i$ on both sides
 $f'(x) = -3x^{4}$ bake $\int i$ on both sides
 $f'(x) = -3x^{4}$ bake $\int i$ on both sides
 $f(x) = -3x^{5}$ c , c constant.
To find C, we use $f(1) = -2$
 $-\frac{3}{5} + C = -2$
 $\int i$ bake $\int i$ on both sides
 $f(x) = -\frac{3x^{5}}{5}$ c , c constant.