Rutgers University
Math 152

Section 6.4: Areas of Surfaces of Revolution - Worksheet Solutions

1. Find the surface area obtained by revolving the given curve about the given axis.
(a) The curve $y=\sqrt{3 x-5}, 2 \leqslant x \leqslant 3$, revolved about the x-axis.

Solution. Method 1: we use an x-integral. The area for a surface of revolution about the x-axis is given by

$$
\begin{aligned}
A & =\int_{\text {curve }} 2 \pi y d s \\
& =\int_{2}^{3} 2 \pi y(x) \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\int_{2}^{3} 2 \pi \sqrt{3 x-5} \sqrt{1+\left(\frac{3}{2 \sqrt{3 x-5}}\right)^{2}} d x \\
& =2 \pi \int_{2}^{3} \sqrt{(3 x-5)\left(1+\frac{9}{4(3 x-5)}\right)} d x \\
& =2 \pi \int_{2}^{3} \sqrt{3 x-5+\frac{9}{4}} d x \\
& =2 \pi \int_{2}^{3} \sqrt{3 x-\frac{11}{4}} d x
\end{aligned}
$$

We can finish evaluating this integral using the substitution $u=3 x-\frac{11}{4}$, which gives $d u=3 d x$. The bounds change as follows

$$
\begin{aligned}
& x=2 \Rightarrow u=6-\frac{11}{4}=\frac{13}{4} \\
& x=3 \Rightarrow u=9-\frac{11}{4}=\frac{25}{4}
\end{aligned}
$$

So the integral becomes

$$
\begin{aligned}
A & =2 \pi \int_{13 / 4}^{25 / 4} \frac{1}{3} \sqrt{u} d u \\
& =\frac{2 \pi}{3}\left[\frac{2}{3} u^{3 / 2}\right]_{13 / 4}^{25 / 4} \\
& =\frac{2 \pi}{3} \cdot \frac{2}{3}\left(\left(\frac{25}{4}\right)^{3 / 2}-\left(\frac{13}{4}\right)^{3 / 2}\right) \\
& =\frac{\pi\left(125-13^{3 / 2}\right)}{18} \text { square units }
\end{aligned}
$$

Method 2: we use a y-integral, observing that we can express the curve as a function of y as $x=\frac{y^{2}-5}{3}$, $1 \leqslant y \leqslant 2$. The area for a surface of revolution about the x-axis is given by

$$
\begin{aligned}
A & =\int_{\text {curve }} 2 \pi y d s \\
& =\int_{1}^{2} 2 \pi y \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \\
& =\int_{1}^{2} 2 \pi y \sqrt{1+\left(\frac{2 y}{3}\right)^{2}} d y \\
& =2 \pi \int_{1}^{2} y \sqrt{1+\frac{4 y^{2}}{9}} d y .
\end{aligned}
$$

We can finish evaluating this integral using the substitution $u=1+\frac{4 y^{2}}{9}$, which gives $d u=\frac{8 y d y}{9}$. The bounds change as follows

$$
\begin{aligned}
& y=1 \Rightarrow u=1+\frac{4}{9}=\frac{13}{9}, \\
& y=2 \Rightarrow u=1+\frac{16}{9}=\frac{25}{9} .
\end{aligned}
$$

So the integral becomes

$$
\begin{aligned}
A & =2 \pi \int_{13 / 9}^{25 / 9} \frac{9}{8} \sqrt{u} d u \\
& =\frac{9 \pi}{4}\left[\frac{2}{3} u^{3 / 2}\right]_{13 / 9}^{25 / 9} \\
& =\frac{9 \pi}{4} \cdot \frac{2}{3}\left(\left(\frac{25}{9}\right)^{3 / 2}-\left(\frac{13}{9}\right)^{3 / 2}\right) \\
& =\frac{\pi\left(125-13^{3 / 2}\right)}{18} \text { square units. }
\end{aligned}
$$

(b) The curve $x=\sqrt{16 y-y^{2}}, 0 \leqslant y \leqslant 8$, revolved about the y-axis.

Solution. We use integration with respect to y. The area for a surface of revolution about the y-axis is given by

$$
\begin{aligned}
A & =\int_{\text {curve }} 2 \pi x d s \\
& =\int_{0}^{8} 2 \pi x(y) \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \\
& =\int_{0}^{8} 2 \pi \sqrt{16 y-y^{2}} \sqrt{1+\left(\frac{16-2 y}{\left.2 \sqrt{16 y-y^{2}}\right)^{2}} d y\right.}
\end{aligned}
$$

$$
\begin{aligned}
& =2 \pi \int_{0}^{8} \sqrt{\left(16 y-y^{2}\right)\left(1+\frac{(8-y)^{2}}{16 y-y^{2}}\right)} d y \\
& =2 \pi \int_{0}^{8} \sqrt{16 y-y^{2}+(8-y)^{2}} d y \\
& =2 \pi \int_{0}^{8} \sqrt{16 y-y^{2}+64-16 y+y^{2}} d y \\
& =2 \pi \int_{0}^{8} 8 d y \\
& =128 \pi \text { square units. }
\end{aligned}
$$

(c) The curve $x=2 \sqrt[3]{y}, 0 \leqslant y \leqslant 1$, revolved about the x-axis.

Solution. Method 1: we use an x-integral. The curve can be expressed as a function of x as $y=\frac{x^{3}}{8}$, $0 \leqslant x \leqslant 2$. The area for a surface of revolution about the x-axis is given by

$$
\begin{aligned}
A & =\int_{\text {curve }} 2 \pi y d s \\
& =\int_{0}^{2} 2 \pi y(x) \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\int_{0}^{2} 2 \pi \frac{x^{3}}{8} \sqrt{1+\left(\frac{3 x^{2}}{8}\right)^{2}} d x \\
& =\frac{\pi}{4} \int_{0}^{2} x^{3} \sqrt{1+\frac{9 x^{4}}{64}} d x
\end{aligned}
$$

We can finish evaluating this integral using the substitution $u=1+\frac{9 x^{4}}{64}$, which gives $d u=\frac{9 x^{3} d x}{16}$. The bounds change as follows

$$
\begin{aligned}
& x=0 \Rightarrow u=1+\frac{9 \cdot 0}{64}=1, \\
& x=2 \Rightarrow u=1+\frac{9 \cdot 2^{4}}{64}=\frac{13}{4} .
\end{aligned}
$$

So the integral becomes

$$
\begin{aligned}
A & =\frac{\pi}{4} \int_{1}^{13 / 4} \frac{16}{9} \sqrt{u} d u \\
& =\frac{4 \pi}{9}\left[\frac{2}{3} u^{3 / 2}\right]_{1}^{13 / 4} \\
& =\frac{4 \pi}{9} \cdot \frac{2}{3}\left(\left(\frac{13}{4}\right)^{3 / 2}-1\right) \\
& =\frac{\pi\left(13^{3 / 2}-8\right)}{27} \text { square units }
\end{aligned}
$$

Method 2: we use a y-integral. The area for a surface of revolution about the x-axis is given by

$$
\begin{aligned}
A & =\int_{\text {curve }} 2 \pi y d s \\
& =\int_{0}^{1} 2 \pi y \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \\
& =\int_{0}^{1} 2 \pi y \sqrt{1+\left(\frac{2}{3 y^{2 / 3}}\right)^{2}} d y \\
& =2 \pi \int_{0}^{1} y \sqrt{1+\frac{4}{9 y^{4 / 3}}} d y \\
& =2 \pi \int_{0}^{1} y \frac{\sqrt{y^{4 / 3}+\frac{4}{9}}}{y^{2 / 3}} d y \\
& =2 \pi \int_{0}^{1} y y^{1 / 3} \sqrt{y^{4 / 3}+\frac{4}{9}} d y
\end{aligned}
$$

We can finish evaluating this integral using the substitution $u=y^{4 / 3}+\frac{4}{9}$, which gives $d u=\frac{4 y^{1 / 3} d y}{3}$. The bounds change as follows

$$
\begin{aligned}
& y=0 \Rightarrow u=0^{4 / 3}+\frac{4}{9}=\frac{4}{9} \\
& y=1 \Rightarrow u=1^{4 / 3}+\frac{4}{9}=\frac{13}{9}
\end{aligned}
$$

So the integral becomes

$$
\begin{aligned}
A & =2 \pi \int_{4 / 9}^{13 / 9} \frac{3}{4} \sqrt{u} d u \\
& =\frac{3 \pi}{2}\left[\frac{2}{3} u^{3 / 2}\right]_{4 / 9}^{13 / 9} \\
& =\frac{3 \pi}{2} \cdot \frac{2}{3}\left(\left(\frac{13}{9}\right)^{3 / 2}-\left(\frac{4}{9}\right)^{3 / 2}\right) \\
& =\frac{\pi\left(13^{3 / 2}-8\right)}{27} \text { square units }
\end{aligned}
$$

(d) The curve $x=\frac{3}{5} y^{5 / 3}, 0 \leqslant y \leqslant 1$, revolved about the y-axis.

Solution. We use integration with respect to y. The area for a surface of revolution about the y-axis is given by

$$
\begin{aligned}
A & =\int_{\text {curve }} 2 \pi x d s \\
& =\int_{0}^{1} 2 \pi x(y) \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{1} 2 \pi \frac{3}{5} y^{5 / 3} \sqrt{1+\left(y^{2 / 3}\right)^{2}} d y \\
& =\frac{6 \pi}{5} \int_{0}^{1} y^{5 / 3} \sqrt{1+y^{4 / 3}} d y
\end{aligned}
$$

We finish evaluating this integral using the substitution $u=1+y^{4 / 3}$, which gives $d u=\frac{4 y^{1 / 3} d y}{3}$. The bounds change as follows

$$
\begin{aligned}
& x=0 \Rightarrow u=1+0^{4 / 3}=1, \\
& x=1 \Rightarrow u=1+1^{4 / 3}=2 .
\end{aligned}
$$

There will be an extraneous factor $y^{4 / 3}$ in the integrand, which we can express in terms of u as $y^{4 / 3}=u-1$. So the area becomes

$$
\begin{aligned}
A & =\frac{6 \pi}{15} \int_{0}^{1} y^{4 / 3} \sqrt{1+y^{4 / 3}} y^{1 / 3} d y \\
& =\frac{6 \pi}{15} \int_{1}^{2}(u-1) \sqrt{u} \frac{3}{4} d y \\
& =\frac{3 \pi}{10} \int_{1}^{2}\left(u^{3 / 2}-\sqrt{u}\right) d u \\
& =\frac{3 \pi}{10}\left[\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}\right]_{1}^{2} \\
& =\frac{6 \pi}{75}(\sqrt{2}+1) \text { units }
\end{aligned}
$$

(e) The curve $y=x^{3 / 2}, 1 \leqslant x \leqslant 4$, revolved about the y-axis.

Solution. We use an x-integral. The area for a surface of revolution about the y-axis is given by

$$
\begin{aligned}
A & =\int_{\text {curve }} 2 \pi x d s \\
& =\int_{1}^{4} 2 \pi x \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\int_{1}^{4} 2 \pi x \sqrt{1+\left(\frac{3 x^{1 / 2}}{2}\right)^{2}} d x \\
& =2 \pi \int_{1}^{4} x \sqrt{1+\frac{9 x}{4}} d x .
\end{aligned}
$$

We can finish evaluating this integral using the substitution $u=1+\frac{9 x}{4}$, which gives $d u=\frac{9 d x}{4}$. The bounds change as follows

$$
\begin{aligned}
& x=1 \Rightarrow u=1+\frac{9}{4}=\frac{13}{4} \\
& x=4 \Rightarrow u=1+\frac{9 \cdot 4}{4}=10
\end{aligned}
$$

We have an extraneous factor x in the integrand which we express in terms of u as

$$
x=\frac{4}{9}(u-1) .
$$

So the integral becomes

$$
\begin{aligned}
A & =2 \pi \int_{13 / 4}^{10} \frac{4}{9} \cdot \frac{4}{9}(u-1) \sqrt{u} d u \\
& =\frac{32 \pi}{81} \int_{13 / 4}^{10}\left(u^{3 / 2}-\sqrt{u}\right) d u \\
& =\frac{32 \pi}{81}\left[\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}\right]_{13 / 4}^{10} \\
& =\frac{32 \pi}{81}\left(\frac{2}{5}\left(10^{5 / 2}-\left(\frac{25}{4}\right)^{5 / 2}\right)-\frac{2}{3}\left(10^{3 / 2}-\left(\frac{25}{4}\right)^{3 / 2}\right)\right) \text { square units } .
\end{aligned}
$$

