Section 8.4: Trigonometric Substitution - Worksheet

1. Calculate the following integrals.
(a) $\int \frac{\sqrt{25 x^{2}-4}}{x} d x$ for $x>\frac{2}{5}$.
(c) $\int \frac{d x}{\left(6 x-x^{2}-5\right)^{5 / 2}}$.
(e) $\int \frac{e^{6 x}}{\sqrt{16-e^{4 x}}} d x$.
(b) $\int \frac{d t}{t \sqrt{9+\ln (t)^{2}}}$.
(d) $\int_{1}^{\sqrt{2}} \frac{d x}{x\left(2 x^{2}-1\right)^{3 / 2}}$.
(f) $\int_{5}^{11} \frac{d x}{\left(x^{2}-10 x+61\right)^{5 / 2}}$.
2. Calculate the average value of the function $f(x)=\frac{1}{x \sqrt{64-x^{2}}}$ on the interval $[4,4 \sqrt{2}]$.
3. (a) Evaluate $\int \sqrt{1+x^{2}} d x$.
(b) Use your result from part (a) for the following applications.
(i) Calculate the length of the curve $y=x^{2}, 0 \leqslant x \leqslant 1$.
(ii) Calculate the area of the surface obtained by revolving the curve $y=e^{x}, 0 \leqslant x \leqslant \ln (2)$, about the x-axis.
(iii) Calculate the area of the surface obtained by revolving the curve $y=\sin ^{-1}(x), 0 \leqslant x \leqslant 1$ about the y-axis.
4. Calculate the area of the region inside the circle of equation $x^{2}-2 x+y^{2}=3$ and above the line $y=\sqrt{3}$.
5. Consider the region \mathcal{R} bounded between the graph of $y=\frac{1}{16-x^{2}}$ and the x-axis for $0 \leqslant x \leqslant 2$. Find the volume of the solid obtained by revolving \mathcal{R} about the line $x=-3$.
