Rutgers University Math 152

Section 8.4: Trigonometric Substitution - Worksheet

1. Calculate the following integrals.

(a)
$$\int \frac{\sqrt{25x^2 - 4}}{x} dx$$
 for $x > \frac{2}{5}$. (c) $\int \frac{dx}{(6x - x^2 - 5)^{5/2}}$. (e) $\int \frac{e^{6x}}{\sqrt{16 - e^{4x}}} dx$.
(b) $\int \frac{dt}{t\sqrt{9 + \ln(t)^2}}$. (d) $\int_1^{\sqrt{2}} \frac{dx}{x(2x^2 - 1)^{3/2}}$. (f) $\int_5^{11} \frac{dx}{(x^2 - 10x + 61)^{5/2}}$.

2. Calculate the average value of the function $f(x) = \frac{1}{x\sqrt{64-x^2}}$ on the interval $[4, 4\sqrt{2}]$.

- 3. (a) Evaluate $\int \sqrt{1+x^2} dx$.
 - (b) Use your result from part (a) for the following applications.
 - (i) Calculate the length of the curve $y = x^2$, $0 \le x \le 1$.
 - (ii) Calculate the area of the surface obtained by revolving the curve $y = e^x$, $0 \le x \le \ln(2)$, about the x-axis.
 - (iii) Calculate the area of the surface obtained by revolving the curve $y = \sin^{-1}(x), 0 \le x \le 1$ about the *y*-axis.
- 4. Calculate the area of the region inside the circle of equation $x^2 2x + y^2 = 3$ and above the line $y = \sqrt{3}$.
- 5. Consider the region \mathcal{R} bounded between the graph of $y = \frac{1}{16 x^2}$ and the *x*-axis for $0 \le x \le 2$. Find the volume of the solid obtained by revolving \mathcal{R} about the line x = -3.