Rutgers University
Math 152

Section 8.4: Trigonometric Substitution - Worksheet Solutions

1. Calculate the following integrals.

(a)

V252 — 14 ,
———dz forx > £.
x
2
Solution. We want 252% —4 = 4 sec(f)? —4, so we substitute z = 2 sec(d) and dz = E sec(6) tan(9)de.

The right triangle for this trigonometric substitution has base angle 6 so that sec(f) = 571 as shown

below.

5x
V25x2 — 4

2

We get v/2522 — 4 = \/4sec(f)2 — 4 = 2tan(f) and the integral becomes

V2522 —4  [2tan() 2
[ |

- —tan(d 6)do
Zsec(f) 5 an(6) sec(8)

= 2/ tan(0)%do
= 2/ (sec(6)* — 1) do
=2 (tan(f) — ) + C.

We need to express this result in terms of . Using the right triangle above, we see that tan(d) =
7&5;2—4 and 6 = sec™! (2£). Thus

V2512 — 4
/%dx: V2522 — 4 — 2sec™ ! (5;> +C'|

/ dt
t+/9 + In(t)2
dt

Solution. We stat by using the substitution u = In(¢), which gives du = %' and

/t\/9 —itln(t)2 :/\/de u?’

We compute this last integral using a trigonometric substitution. We want 9+u? = 949 tan(#)2, so we
substitute u = 3tan(#) and du = 3sec(#)?df. The right triangle for this trigonometric substitution
has base angle 6 so that tan(f) = % as shown below.




V9 +u?

3

We get v9 + u2 = /9 + 9tan()2 = 3sec(f) and the integral becomes

/t\/9+ln /\/9+u2

[ 3sec(#)*do
_/ 3sec(0)

= /560(9)d9
= In [tan(0) + sec()| + C.

We express this result in terms of u using the right triangle above, from which we see that

/ 2
tan(f) = %, sec() = M

3
We get,
dt vV 2
/7:111 Ak Al e
t\/9 + In(t)? 3 3

:1n’u+\/9+u2‘+0.

We now finish by replacing u by In(¢) and we obtain

/7 ln‘ln )+ /9 + In(t) ‘—J—C’.
9+ In(t

dx
© | Gz

Solution. We start by completing the square in the denominator:
6r — 22 —5=—(22—6x) —5=—(22 —62+9)+9—-5=4— (z—3)%

We can now use a trigonometric substitution. We want 4 — (z — 3)% = 4 — 4sin(6)?, so we substitute

x —3 = 2sin(f) or z = 3 + 2sin(d). This gives dz = 2cos(d)df. The right triangle for this

trigonometric substitution has base angle 6 so that sin() = ””—53 as shown below.




5/2

We get (4 — (z+3)2)"" = (4— 45111((9)2)5/2 = (4cos(0)?)°/? = 32 cos(0)®. The integral becomes

dz dx
/(6x—x2—5)5/2 :/(4—(m+3)2)5/2

[ 2cos(0)df
_/32c0s(9)5

REN
16/ cos(0)4

1 4
= — [ sec(0)*d6.
16 (0)
Since the exponent of sec is even, we can split off a factor sec(f)?, rewrite the remaining factors

using the Pythagorean identity sec(f)? = tan(f)? + 1 and then use the substitution u = tan(f),
du = sec(#)%df. This gives

dz 1
/(63: R = 1—6/560(6))2 sec(6)2df

=16 (tan(6) + 1) sec(0)*dd

2
= — 1
16 (u® + 1)du

1 [u?

: (tan(e)B +tan(9)> e

16\ 3
tan(f) [ tan(9)?
= 1 C~
16 ( 3 )
To express this antiderivative in terms of x, we use the right triangle above, from which we see that
tan() = ——2=2—_. So we get
) =t &

dx B z—3 (x —3)2
/(6x—x2—5)3/2 16 4 — (x — 3)2 (3(4—(95_3)2)+1)+C.

V2 dz
(d) /1 x(222 — 1)3/2°

Solution. We want 222 — 1 = sec(f)? — 1, so we substitute r = % and dx = ww. The

right triangle for this trigonometric substitution has base angle § so that sec(f) = v/2z as shown
below.

V2z




We get (222 — 1)3/2 = (sec(6)? — 1)3/2 = (tan(#)?)3/? = tan(6)>. The bounds change as follows:

=1 = sec(d) =vV2-1=Vv2 = 9:sec_1(\@):%,
r=v2 = 860(9)=ﬁ~\/§=2 = 9:sec_1(2):g.
The integral becomes
V2 x/3 sec(6) tan(G)de
/1 (2332 x(22% —1)3/2 / ) tan(6)3
- /7r/4 tan
= / cot (6
/ CSC 1) db
= [~ cot(f) — 0]:?2
T
= —cot(3) -5 +eot () +]
1 s
= 1 _— —_——

o/ VT

Solution. We start with the substitution v = €2?, so that du = 2e?>*dz. The extraneous factor e**
in the numerator can be expressed as e** = (€2¥)2 = u2. So the integral becomes

2z

66:v 641 o u2
—dr = | ———e"Fdr = | ——du
V16 — et V16 — et 2v/16 — u?

We can now use a trigonometric substitution. We want 16 — u? = 16 — 16sin(6)?, so we substitute
u = 4sin(f) and du = 4cos(f)df. The right triangle for this trigonometric substitution has base

angle 0 so that sin(f) = § as shown below.

2

V16 — u?

We get /16 — u2 = /16 — 16sin(f)2 = /16 cos(0)2 = 4 cos(f). The integral becomes

eﬁx u2
/ - / g
V16 — et 2v/16 — u?

[ (4sin(9))? o
B /2(4005(0))4 (6)df



= 8/ sin(0)2d6.

1 —cos(20)

5 . We get

We can compute this integral using the double angle formulas sin(6)?

dng/l_#s(w)gdg

—4 (9 - Sm?”) +C

=4 (6 — cos(f)sin(0)) + C

e6;v
/\/ 16 — e

where we have used the trigonometric identity sin(26) = 2 cos(6) sin(#) in the last step. We can use
the right triangle above to express this result in terms of u, observing that

V16 — u?

6 = sin~* (%) , cos() = — sin(f) =

~l e

We can then replace u = €2* and we get

—_
S
7‘3
®
FN
8
U
S
Il
=
/N
@
=
L
—
I

/11 dx
5 (22 —10x + 61)5/2°
Solution. We start by completing the square in the denominator:
2% — 10z + 61 = (2% — 10z + 25) — 25 + 61 = (z — 5)% + 36.

We can now use a trigonometric substitution. We want (z — 5)? + 36 = 36tan(6)? + 36, so we
substitute x — 5 = 6tan(d), or x = 5 + 6tan(#). This gives dr = 6sec(d)?df and the following right

. . _ _5
triangle with base angle 6 such that tan(f) = *&=>.
(x—5)2+36
T—95
0
6

Then ((z —5)% 4 36)%/2 = (36 tan(6)? + 36)°/2 = (36 sec(#)?)*/? = 6° sec(d)®. The bounds change as
follows:

=5 = tan(9)=$=o = 0= tan—(0) = 0,
11 —
r=11 = tan(@):TE/)zl = 9:tan*1(1):£.



The integral becomes

/11 dr _ /11 dr
5 (22 —10z4+61)5/2  J5 ((z —5)2 +36)5/2

B /”/46sec(e)2d0
Jo  69sec(0)?

1 /”/4 df
1296/, sec(6)3

B 1 7\'/4
1296 J,

cos(#)3d6.

Since the exponent of cos is odd, we can compute this integral by splitting off a factor cos(f),
rewriting the remaining factors with the trigonometric identity cos(#)? = 1 — sin(#)? and using the
substitution u = sin(#), du = cos(6)df. The bounds will change as follows

=0 = u=sin(0) =0,
0 s V2
9—12>U—Sl ( )

4

5

The integral becomes

11 d 1 /4 ,
/5 (22 — 10z + 61)5/2 1296 /0 cos(6)" cos(6)df

1 7\'/4
= — (1 — sin(0)?) cos(6)dd
1296 /,
1 V22 )
- 1—u?)d
1296 J, (1 =) du
_L u73 V2/2
1206 |1 3,
_ 1 (Ve V2
T 1296\ 2 23.3
| 5v2
~ 15552 |

2. Calculate the average value of the function f(z) = on the interval [4,4+/2].

1
xV64 — a2
Solution. The average value on the interval [4,41/2] is given by

1 42 dx
42 —4)y V64— 22

We compute this integral using the substitution & = 8sin(f) and dax = 8cos(#)df. The right triangle for

this trigonometric substitution has base angle § such that sin(f) = § as shown below.

av(f)



V64 — x2

Then V64 — 22 = /64 — 64sin(0)2 = /64 cos(0)2 = 8 cos(f). The bounds change as follows:

)

r=4 = sin(t9):%:1 = azsin—l(;>:

m
2 6
4+/2 2 2
x:4\/§:>sin(9):\!:\Qfﬁezsinl<\2ﬁ>zz.

Therefore

/4
av(f) = 1 / 8 cos(6)db

4(V2 1) Jrss 8sin(f)8cos(d)

B 1 /”/4 9
32(v/2 — 1) Jxs6 sin(0)
1 w/4
= 7/ csc(6)do

22— 1) )uss
-t n |esc(8) — co /4
- s I lseld) — @)

- 32(\/15 1) (m ’CSC (%) ot (%)‘ ~n ‘CSC (%) ot (%) D

= 32(\;1) <ln (\/57 1) —In(2 - \ﬂ3))> .

3. (a) Evaluate /\/1 + 22dx.

Solution. We want 1 + x2 = 1 + tan(#)?, so we substitute x = tan(d), dz = sec(#)?df. The right
triangle for this trigonometric substitution has base angle 6 so that tan(f) = x, as shown below.

ARTE

1

Then v/1+ 22 = /1 + tan(f)2 = /sec(d)? = sec(f). The integral becomes

/@dm = /sec(@) sec(6)2df



= /sec(0)3d0.

We can evaluate / sec(#)?df with an IBP and solving for the unknown integral when it reappears on

the right-hand side. For the IBP we use the parts

u=sec(f) = du = sec(0)tan(0)do,
dv = sec(0)?df = v = tan(f).

We get
/ sec(8)3d0 = / sec(0)? sec(0)do
/ sec(0)3d0 = tan(6) sec(6) — / tan(0) sec(0) tan(6)dd
/ sec(0)2d6 = tan(9) sec(8) — / tan(6)? sec(8)do

We will use the Pythagorean identity tan(6)? = sec()? — 1 to see the original integral reappear on
the right-hand side.

/sec(0)3d0 = tan(f) sec(f) — / (sec(9)? — 1) sec(6)dd
/Sec(0)3d9 = tan(f) sec(f) — /sec(&)3d9 —|—/sec(9)d9

/sec(9)3d9 = tan(f) sec(f) — /sec(9)3d9 + In [sec(f) + tan(9)|
We can now move the term —/ sec()3d to the left hand side and finish solving
/sec(9)3d9 = tan(f) sec(6) + In [sec(f) + tan(9)|

2
= /sec(9)3d9 = % (tan(d) sec(8) + In|sec(d) + tan(0)|) + C.

Using the right triangle above, we can express this result in terms of x, observing that tan(d) = x
and sec(f) = va? + 1. We get

/\/1+x2d:c:%(x\/x2+1+ln‘x+\/x2+l‘)+C.

(b) Use your result from part (a) for the following applications.

(i) Calculate the length of the curve y = 2%, 0 < z < 1.

Solution. The arc length is given by

1 2
LZ/“l—l-(@) dx
0 dz



/01\/1 + (2z)°dx
= ;/jmdu (u = 2z)
! [1 (umﬂn\wmm

2
2 |2 o

i (2\/5+ In (2 + x/5)) units |

(ii) Calculate the area of the surface obtained by revolving the curve y = e*, 0 < z < In(2), about
the z-axis.

Solution. The area of a surface of revolution about the z-axis is given by

In(2) d 2
Y
L= 2 1 —
/0 my(z)4 )1+ (dac) dx
In(2)
= / 2me®\/ 1+ e2*dx
0
2
= 27r/ V1i+uidu (u=e)
1
=27 [; (uvu2 +1 —|—ln’u—|— Vu?+ 1‘)]
=7 (2\/3 +In(2+v5) — V2 —1In(1 + \/§)> square units |

2
1

(iii) Calculate the area of the surface obtained by revolving the curve y = sin~'(z), 0 < = < 1 about
the y-axis.

Solution. Note that the curve can be expressed as a function of y as = sin(y), 0 <y < . The
area of a surface of revolution about the y-axis is given by

/2 dr\?
L :/ 2mx 1+ () d
; () 0 ) Y
w/2
:/ 2w sin(y)+/1 + cos(y)3dy
0
0
= 27r/ —V1+u2du (u=cos(y))
1
1
:277/ V14 uldu
0
=27 {1 (ux/u2+1+ln‘u+\/u2+1’>}

1
2 0

=7 (\/5—1— In(1+ \/5)) square units |.




4. Calculate the area of the region inside the circle of equation 22 — 2z + 42 = 3 and above the line y = /3.

Solution. The region is sketched below.

(03

K 2 y

Note that the upper half semi-circle can be expressed as a function of z as y = V3 +2x —x2. We
will compute the area using vertical strips. The vertical strip at z in the region has length ¢(z) =
V3 + 22 — 22 — /3. Therefore, the area is given by

2 2 2
A:/ é(a:)d:c:/ <\/3+2x7x27\/§> d:c:/ V3 + 2z — x2dx — 2V/3.
0 0 0
To compute the remaining integral, we start by completing the square in the square root:
3420 —2°=3— (22 -22)=3—- (2> 22+ 1)+ 1=4— (z — 1)%

We can then use a trigonometric substitution. We want 4 — (x — 1)? = 4 — 4sin(6)?, so we substitute
x—1=2sin(d) or z = 1+ 2sin(f). This gives dz = 2cos(f)df and /4 — (x — 1)2 = /4 — 4sin(0)? =
4 cos(0)? = 2cos(f). The bounds of the integral become

. 0—-1 1 — 1 T
rz=0 = s1n(9)—T——§ = 6 =sin (—2>__

2—1 1 1
r=2 = sin(f) = —=- = 6 = sin~! (2) =T
Therefore

2 2
/ \/3+2ﬂc—x2dx:/ Va4 —(x—1)%dz
0 0

/6
= / 2 cos(#)2 cos(6)db
—m/6

/6
4/ cos(0)%d6

—7/6

/6
8/ cos(0)d6.
0

10



5. Consider the region R bounded between the graph of y =

where we have used the fact that the integrand is even in the last step. We can now compute this integral
with the double angle formula as follows:

2 7'r/61 )
/ \/3+233—x2d1::8/ L+ cos(20) 1
0 0 2
sin(29)}ﬂ/6

—ao+

2
LNRVE]
:4<6+11)

2
=§+x/§.

0

In conclusion, the area is

2
A:/ V3 + 2 — 22dx — 2V/3
0

2
:§+\/§—2\/§

2 .
=3~ 3 square units |.

T and the z-axis for 0 < z < 2. Find
—x
the volume of the solid obtained by revolving R about the line z = —3.

Solution. We use the shell method. Revolving the vertical strip at x about the line x = —3 forms a

cylindrical shell of radius 7(z) = # + 3 and height h(z) = 1z7—z. Therefore

2
V= / 2rr(z)h(z)dz
0
2
= 27r/ ﬁdm.
o 16 — a2

We can evaluate this integral with a trigonometric substitution. We substitute = = 4sin(f), so dz =
4cos(0)df and 16 — 22 = 16 — 16sin(#)? = 16 cos(#)?. The bounds become

r=0 = sin(9):%:O = 0 =sin"'(0) =0,
_ in(0) = 2 = N e s
r=2 = Sln(a)—4—2 = 0 =sin (2)6'
So
/6 45in(6) + 3
- alic O
|4 27T/0 16 cos(0)? cos(0)do
ﬂ/”/64sin(¢9)+3d9
2 /o cos(0)
T /6
= 5/ (4tan(f) 4 3sec(d)) db
0

11



w\=1 l\ﬂﬁ

[sec(8)] + 31n [sec(8) + tan(6)[];/

T
2

(oo

4
(
(4111( ;111(3)) cubic units |

12



