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Math 152

Section 8.8: Improper Integrals - Worksheet Solutions

1. Calculate the following integrals or determine if they diverge.
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Solution. This is a type II improper integral due to the vertical asymptote of y = csc(z) at = = 0.

/4 w/4
/ csc(x)dx = lim csc(x)dx
0 a—0* Jo
w/4
a

= lim [—In]csc(z) + cot(x)|]

a—0t

= lim (— In(v2 +1) 4 In |esc(a) + cot(a)|)

a—0*t

=0

since cot(a),csc(a) — oo when a — 0T, so Injesc(a) 4 cot(a)] — oo when a — 0F. Therefore

/4
/ csc(x)dz diverges |.
0

(c) /0 re3dx

— 00

Solution. We can start by finding an antiderivative using integration by parts. We use the parts
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We can now compute the improper integral.
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Solution. We can start by finding an antiderivative of the integrand. For this, we can use the

trigonometric substitution = 4tan(d), dr = 4sec(f)?df. The right triangle for this trigonometric
substitution has base angle 6 so that tan(f) = § as shown below.
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We get (16 + u?)3/2 = (16 + 16 tan(0)?)3/2 = (16 sec(#)?)3/? = 64 sec(h)?, and the integral becomes
/ dx _/4sec(9)2d9
(16 +22)3/2 | 64sec(h)3

Ly

16/ sec()
1

= 1—6/cos(9)d9
1

=16 sin(0) + C.




In this antiderivative, we can express sin(f#) in terms of x using the right triangle above, in which we
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see that sin(f) = o= Thus
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We can now compute the improper integral. Observe that the integrand is even, so the integral on
(—00,00) is equal to two times the integral on [0, c0).
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Solution. This is a type II improper integral due to the vertical asymptote of y = In(x) at = = 0.
First we compute an antiderivative using integration by parts with parts

d
u=1n(z) = du ==
x

dv=dx = v=u=x.
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We obtain



Next we compute the improper integral.
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Solution. This is a type II improper integral due to the vertical asymptote of y = T5e—2 at x =

Because the vertical asymptote is in the interior of the interval of integration, we need to break-up
the integral into a sum of two integrals and compute each of them as a limit. We get
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Solution. This is a type II improper integral due to the vertical asymptote of y = \/ﬁ at x =
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Solution. We use the substitution v = In(z), du = df to compute the antiderivative.

/ dv _ [du
rln(z) ) w
=lnlul+C

= In|ln(x)| + C.

We can now use this antiderivative to compute the improper integral.
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(1) /Oooe"” sin(z)dz

Solution. We start by computing an antiderivative, using two successive integration
first IBP, the parts are

u=sin(z) = du = cos(x)dz,
dv=¢e%der = v=—e".

This gives
/e*z sin(z)dx = —e™ " sin(x) — / — e 7 cos(x)dx

= —e "sin(z) + /e*‘”‘c cos(z)dz.

by parts. For the



The second IBP uses the parts

u=cos(z) = du= —sin(z)dz,

x

dv=¢e¢""dx = v=—e"

We get

/e_”” sin(z)dz = —e sin(x) — e ¥ cos(z) — /(—e_””)(— sin(z))dr = —e “sin(z) — e * cos(x) — /e_“J sin(z)dz.

We can solve this relation for the unknown integral by moving the term — / e Tsin(z)dzr to the
left-hand side and we get
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We can now compute the improper integral.
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This last limit can be computed using the Sandwich Theorem. We have the inequalities

— 2 < sin(b) + cos(b) < 2

Lo 2 < sin(b) + cos(b) < 2

eb = eb eb
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Since lim — = 0= lim ——, it follows that hm sin(b) + cos(b)
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2. Use a convergence test to determine if the following improper integrals converge or diverge.
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Solution. We use the DCT. Observe that for z in [3,00), we have
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Solution. We use the DCT. Observe that for z in [1,00) we have the inequalities
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Furthermore, the integral / —5 converges since it is a type I p-integral with p =2 > 1. Therefore,
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Remark. We can also use the LCT, observing that
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Solution. We use the DCT, observing that for x in [4,00) we have

— 1< cos(z)
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4 X

o0 5
that 7008(36) a dx diverges | as well.
f 23/5

Remark: we would not be able to use the LCT to compare with the divergent p-integral integral
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lim —= — = lim (cos(z) 4+ 5) does not exist.
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Solution. We use the DCT, observing that for z in (0, 1] we have
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Furthermore, the integral / 7 converges since it is a type II p-integral with p = 5 < 1. Tt follows
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“bigger function” / — diverges (type II p-integral with p =2 > 1).
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Remark 2. We could have also used the LCT to compare with the convergent type II p-integral
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Solution.We use the LCT, comparing with —. We have
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Furthermore, the integral / — converges since it is a type I p-integral with p = 3 > 1. Hence,
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Remark. The DCT cannot be used to compare with the convergent type I p-integral / — since
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and knowing that the integral of the “smaller function” converges does not say anything about the
integral of the “bigger function”.
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Solution. We use the LCT. To find a good function to compare to, we keep the terms of the numerator
and denominator that are dominant when x — oo:
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Now that we have found our reference function, we properly establish the limit comparison.
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We also know that the integral / 7z diverges since it is a type I p-integral with p = 5 < 1.
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Therefore, dz diverges | as well.
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3. Consider the unbounded region R between the graph of y = and the z-axis for x > 1.

(a) Find the area of the region R or determine if R has infinite area.

Solution. The area of R is given by
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The antiderivative of the integrand can be found with the substitution v = In(x), du = dx—w, which

gives
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We can use this to compute the area, as follows
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So | R has infinite area|.
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(b) We now revolve the region R about the z-axis to form a solid of revolution. Calculate the volume of
the solid or determine if the solid has infinite volume.

Solution. Revolving the vertical strip at x in the region about the x-axis forms a disk of radius
r(z) = (@) S the volume is given by
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To compute the antiderivative of the integrand, we use two successive IPBs. The first one will use
the parts
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For the second IBP, we take
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We can now use this to compute the volume.
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To compute the remaining limit, we use L'Hopital’s Rule twice for the indeterminate form 22
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(¢c) We now revolve the region R about the y-axis to form a solid of revolution. Calculate the volume of

the solid or determine if the solid has infinite volume.

Solution. Revolving the vertical strip at « about the y-axis forms a shell with radius r(z) =  and
height h(z) = @ So the volume is

V= /1 " orr(w)h(x)dz /1 T ome ) g op /1 " n(2)da.
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We have previously computed the antiderivative of the integrand using integration by parts and found
that

/ln(z)da: = z(ln(z) — 1) + C.

So the volume is
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so | the solid has infinite volume |.
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