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Section 8.8: Improper Integrals - Worksheet Solutions

1. Calculate the following integrals or determine if they diverge.

(a)

∫ ∞

0

e−5xdx

Solution. ∫ ∞

0

e−5xdx = lim
b→∞

∫ b

0

e−5xdx

= lim
b→∞

[
−1

5
e−5x

]b
0

= lim
b→∞

(
−1

5
e−5b +

1

5
e0
)

=

(
−1

5
· 0 + 1

5

)
=

1

5

(b)

∫ π/4

0

csc(x)dx

Solution. This is a type II improper integral due to the vertical asymptote of y = csc(x) at x = 0.∫ π/4

0

csc(x)dx = lim
a→0+

∫ π/4

0

csc(x)dx

= lim
a→0+

[− ln |csc(x) + cot(x)|]π/4a

= lim
a→0+

(
− ln(

√
2 + 1) + ln |csc(a) + cot(a)|

)
= ∞

since cot(a), csc(a) → ∞ when a → 0+, so ln |csc(a) + cot(a)| → ∞ when a → 0+. Therefore∫ π/4

0

csc(x)dx diverges .

(c)

∫ 0

−∞
xe3xdx

Solution. We can start by finding an antiderivative using integration by parts. We use the parts

u = x ⇒ du = dx

dv = e3xdx ⇒ v =
e3x

3
.
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We obtain ∫
xe3xdx =

xe3x

3
−
∫

e3x

3
dx

=
xe3x

3
− e3x

9
+ C

=
(3x− 1)e3x

9
+ C.

We can now compute the improper integral.∫ 0

−∞
xe3xdx = lim

a→−∞

∫ 0

a

xe3xdx

= lim
a→−∞

[
(3x− 1)e3x

9

]0
a

= lim
a→−∞

(
−1

9
− (3a− 1)e3a

9

)
= −1

9
− lim

a→−∞

(3a− 1)

9e−3a

L′H
=
∞
∞

−1

9
− lim

a→−∞

3

−27e−3a

= −1

9
− 0

= −1

9
.

(d)

∫ ∞

−∞

dx

(16 + x2)3/2

Solution. We can start by finding an antiderivative of the integrand. For this, we can use the
trigonometric substitution x = 4 tan(θ), dx = 4 sec(θ)2dθ. The right triangle for this trigonometric
substitution has base angle θ so that tan(θ) = x

4 as shown below.

4

x

√
16 + x2

θ

We get (16 + u2)3/2 = (16 + 16 tan(θ)2)3/2 = (16 sec(θ)2)3/2 = 64 sec(θ)3, and the integral becomes∫
dx

(16 + x2)3/2
=

∫
4 sec(θ)2dθ

64 sec(θ)3

=
1

16

∫
dθ

sec(θ)

=
1

16

∫
cos(θ)dθ

=
1

16
sin(θ) + C.
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In this antiderivative, we can express sin(θ) in terms of x using the right triangle above, in which we
see that sin(θ) = x√

16+x2
. Thus ∫

dx

(16 + x2)3/2
=

x

16
√
16 + x2

+ C.

We can now compute the improper integral. Observe that the integrand is even, so the integral on
(−∞,∞) is equal to two times the integral on [0,∞).∫ ∞

−∞

dx

(16 + x2)3/2
= 2

∫ ∞

0

dx

(16 + x2)3/2

= 2 lim
b→∞

∫ b

0

dx

(16 + x2)3/2

= 2 lim
b→∞

[
x

16
√
16 + x2

]b
0

= 2 lim
b→∞

b

16
√
16 + b2

·
1
b
1
b

= 2 lim
b→∞

1

16
√

16+
b2 1

= 2
1

16

=
1

8
.

(e)

∫ 1

0

ln(x)dx

Solution. This is a type II improper integral due to the vertical asymptote of y = ln(x) at x = 0.
First we compute an antiderivative using integration by parts with parts

u = ln(x) ⇒ du =
dx

x
dv = dx ⇒ v = x.

We obtain ∫
ln(x)dx = x ln(x)−

∫
x
1

x
dx

= x ln(x)−
∫
dx

= x ln(x)− x+ C.
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Next we compute the improper integral.∫ 1

0

ln(x)dx = lim
a→0+

∫ 1

a

ln(x)dx

= lim
a→0+

[x ln(x)− x]
1
a

= lim
a→0+

(−1− a ln(a) + a)

= −1− lim
a→0+

a ln(a) + 0

= −1− lim
a→0+

ln(a)
1
a

L′H
=
∞
∞

−1− lim
a→0+

1
a

− 1
a2

= −1− lim
a→0+

(−a)

= −1− 0

= −1 .

(f)

∫ 1

−2

dx
3
√
3x− 2

Solution. This is a type II improper integral due to the vertical asymptote of y = 1
3
√
3x−2

at x = 2
3 .

Because the vertical asymptote is in the interior of the interval of integration, we need to break-up
the integral into a sum of two integrals and compute each of them as a limit. We get∫ 1

−2

dx
3
√
3x− 2

=

∫ 2/3

−2

dx
3
√
3x− 2

+

∫ 1

2/3

dx
3
√
3x− 2

= lim
b→ 2

3
−

∫ b

−2

dx
3
√
3x− 2

+ lim
a→ 2

3
+

∫ 1

a

dx
3
√
3x− 2

= lim
b→ 2

3
−

[
(3x− 2)2/3

2

]b
−2

+ lim
a→ 2

3
+

[
(3x− 2)2/3

2

]1
a

= lim
b→ 2

3
−

(
(3b− 2)2/3

2
− 2

)
+ lim

a→ 2
3
+

(
1− (3a− 2)2/3

2

)
= (0− 2) + (1− 0)

= −1 .

(g)

∫ 3/2

0

dx√
9− 4x2
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Solution. This is a type II improper integral due to the vertical asymptote of y = 1√
9−4x2

at x = 3
2 .∫ 3/2

0

dx√
9− 4x2

= lim
b→ 3

2
−

∫ b

0

dx√
9− 4x2

= lim
b→ 3

2
−

[
1

2
sin−1

(
2x

3

)]b
0

= lim
b→ 3

2
−

(
1

2
sin−1

(
2b

3

)
− 0

)
=

1

2
sin−1(1)

=
π

4
.

(h)

∫ ∞

e

dx

x ln(x)

Solution. We use the substitution u = ln(x), du = dx
x to compute the antiderivative.∫

dx

x ln(x)
=

∫
du

u

= ln |u|+ C

= ln |ln(x)|+ C.

We can now use this antiderivative to compute the improper integral.∫ ∞

e

dx

x ln(x)
= lim

b→∞

∫ b

e

dx

x ln(x)

= lim
b→∞

[ln |ln(x)|]be
= lim

b→∞
(ln |ln(b)| − ln |ln(e)|)

= ∞

since ln(b) → ∞ when b → ∞. Therefore

∫ ∞

e

dx

x ln(x)
diverges .

(i)

∫ ∞

0

e−x sin(x)dx

Solution. We start by computing an antiderivative, using two successive integration by parts. For the
first IBP, the parts are

u = sin(x) ⇒ du = cos(x)dx,

dv = e−xdx ⇒ v = −e−x.

This gives ∫
e−x sin(x)dx = −e−x sin(x)−

∫
− e−x cos(x)dx

= −e−x sin(x) +

∫
e−x cos(x)dx.
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The second IBP uses the parts

u = cos(x) ⇒ du = − sin(x)dx,

dv = e−xdx ⇒ v = −e−x.

We get∫
e−x sin(x)dx = −e−x sin(x)− e−x cos(x)−

∫
(−e−x)(− sin(x))dx = −e−x sin(x)− e−x cos(x)−

∫
e−x sin(x)dx.

We can solve this relation for the unknown integral by moving the term −
∫

e−x sin(x)dx to the

left-hand side and we get

2

∫
e−x sin(x)dx = −e−x sin(x)− e−x cos(x)

⇒
∫
e−x sin(x)dx = −e−x(sin(x) + cos(x))

2
+ C

We can now compute the improper integral.∫ ∞

0

e−x sin(x)dx = lim
b→∞

∫ b

0

e−x sin(x)dx

= lim
b→∞

[
−e−x(sin(x) + cos(x))

2

]b
0

= lim
b→∞

(
−e−b(sin(b) + cos(b))

2
+

1

2

)
=

1

2
− lim

b→∞

sin(b) + cos(b)

eb
.

This last limit can be computed using the Sandwich Theorem. We have the inequalities

− 2 ⩽ sin(b) + cos(b) ⩽ 2

⇒ − 2

eb
⩽

sin(b) + cos(b)

eb
⩽

2

eb

Since lim
b→∞

2

eb
= 0 = lim

b→∞
− 2

eb
, it follows that lim

b→∞

sin(b) + cos(b)

eb
= 0. Hence

∫ ∞

0

e−x sin(x)dx =
1

2
.

2. Use a convergence test to determine if the following improper integrals converge or diverge.

(a)

∫ ∞

3

dx

xex
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Solution. We use the DCT. Observe that for x in [3,∞), we have

0 ⩽ ex ⩽ xex

⇒ 0 ⩽
1

xex
⩽

1

ex
.

Furthermore,

∫ ∞

3

dx

ex
converges since

∫ ∞

3

dx

ex
= lim

b→∞

∫ b

3

e−xdx

= lim
b→∞

(
−e−b + e3

)
= e3.

Thus,

∫ ∞

3

dx

xex
converges as well.

Remark: the inequality

0 ⩽
1

xex
⩽

1

x

is also true, but it does not help establish the convergence of

∫ ∞

3

dx

xex
since the integral of the “bigger

function”

∫ ∞

3

dx

x
diverges (type I p-integral with p = 1).

(b)

∫ ∞

1

dx

x2 + 3x+ 1

Solution. We use the DCT. Observe that for x in [1,∞) we have the inequalities

0 ⩽ x2 ⩽ x2 + 3x+ 1

⇒ 0 ⩽
1

x2 + 3x+ 1
⩽

1

x2
.

Furthermore, the integral

∫ ∞

1

dx

x2
converges since it is a type I p-integral with p = 2 > 1. Therefore,∫ ∞

1

dx

x2 + 3x+ 1
converges as well.

Remark. We can also use the LCT, observing that

lim
x→∞

1
x2+3x+1

1
x2

= lim
x→∞

1

1 + 3/x+ 1/x2
= 1 > 0

and the integral

∫ ∞

1

dx

x2
converges since it is a type I p-integral with p = 2 > 1.

(c)

∫ ∞

4

cos(x) + 5

x3/5
dx
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Solution. We use the DCT, observing that for x in [4,∞) we have

− 1 ⩽ cos(x)

⇒ 0 ⩽ 4 ⩽ cos(x) + 5

⇒ 0 ⩽
4

x3/5
⩽

cos(x) + 5

x3/5

Furthermore, the integral

∫ ∞

4

4

x3/5
dx diverges since it is a type I p-integral with p = 3

5 ⩽ 1. It follows

that

∫ ∞

4

cos(x) + 5

x3/5
dx diverges as well.

Remark: we would not be able to use the LCT to compare with the divergent p-integral integral∫ ∞

4

dx

x3/5
since

lim
x→∞

cos(x)+5
x3/5

1
x3/5

= lim
x→∞

(cos(x) + 5) does not exist.

(d)

∫ 1

0

dx√
x+ x2

Solution. We use the DCT, observing that for x in (0, 1] we have

0 ⩽
√
x ⩽

√
x+ x2

⇒ 0 ⩽
1

x2 +
√
x
⩽

1√
x

Furthermore, the integral

∫ 1

0

dx√
x

converges since it is a type II p-integral with p = 1
2 < 1. It follows

that

∫ 1

0

dx

x2 +
√
x

converges as well.

Remark 1. The inequality

0 ⩽
1

x2 +
√
x
⩽

1

x2

is also true, but it does not help establish the convergence of

∫ 1

0

dx

x2 +
√
x

since the integral of the

“bigger function”

∫ 1

0

dx

x2
diverges (type II p-integral with p = 2 ⩾ 1).

Remark 2. We could have also used the LCT to compare with the convergent type II p-integral
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∫ 1

0

dx√
x
, remarking that

lim
x→0+

1
x2+

√
x

1√
x

= lim
x→0+

√
x

x2 +
√
x

= lim
x→0+

√
x

x2 +
√
x
·

1√
x

1√
x

= lim
x→0+

1

x3/2 + 1

= 1 > 0.

(e)

∫ ∞

5

xdx

x4 − 1

Solution.We use the LCT, comparing with
1

x3
. We have

lim
x→∞

x
x4−1

1
x3

= lim
x→∞

x4

x4 − 1

= lim
x→∞

x4

x4 − 1
·

1
x4

1
x4

= lim
x→∞

1

1− 1
x4

= 1 > 0.

Furthermore, the integral

∫ ∞

5

dx

x3
converges since it is a type I p-integral with p = 3 > 1. Hence,∫ ∞

5

xdx

x4 − 1
converges as well.

Remark. The DCT cannot be used to compare with the convergent type I p-integral

∫ ∞

5

dx

x3
since

we have the inequalities

0 ⩽ x4 − 1 ⩽ x4

⇒ 0 ⩽
1

x4
⩽

1

x4 − 1

⇒ 0 ⩽
1

x3
⩽

x

x4 − 1

and knowing that the integral of the “smaller function” converges does not say anything about the
integral of the “bigger function”.

(f)

∫ ∞

1

x3 + 5x2 + 1√
x7 + 4x+ 2

dx
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Solution. We use the LCT. To find a good function to compare to, we keep the terms of the numerator
and denominator that are dominant when x → ∞:

x3 + 5x2 + 1√
x7 + 4x+ 2

∼ x3

√
x7

=
x3

x7/2
=

1

x1/2
.

Now that we have found our reference function, we properly establish the limit comparison.

lim
x→∞

x3+5x2+1√
x7+4x+2

1
x1/2

= lim
x→∞

x7/2 + 5x5/2 + x1/2

√
x7 + 4x+ 2

= lim
x→∞

x7/2 + 5x5/2 + x1/2

√
x7 + 4x+ 2

·
1

x7/2

1
x7/2

= lim
x→∞

1 + 5
x2 + 1

x3√
1 + 4

x6 + 2
x7

= 1 > 0.

We also know that the integral

∫ ∞

1

dx

x1/2
diverges since it is a type I p-integral with p = 1

2 ⩽ 1.

Therefore,

∫ ∞

1

x3 + 5x2 + 1√
x7 + 4x+ 2

dx diverges as well.

3. Consider the unbounded region R between the graph of y =
ln(x)

x
and the x-axis for x ⩾ 1.

(a) Find the area of the region R or determine if R has infinite area.

Solution. The area of R is given by

A =

∫ ∞

1

ln(x)

x
dx.

The antiderivative of the integrand can be found with the substitution u = ln(x), du = dx
x , which

gives ∫
ln(x)

x
dx =

∫
udu =

u2

2
+ C =

ln(x)2

2
+ C.

We can use this to compute the area, as follows

A =

∫ ∞

1

ln(x)

x
dx

= lim
b→∞

∫ b

1

ln(x)

x
dx

= lim
b→∞

[
ln(x)2

2

]b
1

= lim
b→∞

ln(b)2

2

= ∞.

So R has infinite area .
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(b) We now revolve the region R about the x-axis to form a solid of revolution. Calculate the volume of
the solid or determine if the solid has infinite volume.

Solution. Revolving the vertical strip at x in the region about the x-axis forms a disk of radius

r(x) = ln(x)
x . So the volume is given by

V =

∫ ∞

1

πr(x)2dx = π

∫ ∞

1

ln(x)2

x2
dx.

To compute the antiderivative of the integrand, we use two successive IPBs. The first one will use
the parts

u = ln(x)2 ⇒ du =
2 ln(x)dx

x
,

dv =
dx

x2
⇒ v = − 1

x
.

This gives ∫
ln(x)2

x2
dx = − ln(x)2

x
−
∫

2 ln(x)

x

(
− 1

x

)
dx

= − ln(x)2

x
+ 2

∫
ln(x)

x2
dx.

For the second IBP, we take

u = ln(x) ⇒ du =
dx

x
,

dv =
dx

x2
⇒ v = − 1

x
.

We obtain ∫
ln(x)2

x2
dx = − ln(x)2

x
+ 2

(
− ln(x)

x
−
∫

1

x

(
− 1

x

)
dx

)
= − ln(x)2

x
− 2

ln(x)

x
+ 2

∫
1

x2
dx

= − ln(x)2

x
− 2

ln(x)

x
− 2

x
+ C

= − ln(x)2 + 2 ln(x) + 2

x
+ C.

We can now use this to compute the volume.

V = π

∫ ∞

1

ln(x)2

x2
dx

= π lim
b→∞

∫ b

1

ln(x)2

x2
dx

= π lim
b→∞

[
− ln(x)2 + 2 ln(x) + 2

x

]b
1

= π lim
b→∞

(
2− ln(b)2 + 2 ln(b) + 2

b

)
= π

(
2− lim

b→∞

ln(b)2 + 2 ln(b) + 2

b

)
.

11



To compute the remaining limit, we use L’Hôpital’s Rule twice for the indeterminate form ∞
∞ .

V
L′H
=
∞
∞

π

(
2− lim

b→∞

2 ln(b)
b + 2

b

1

)

= π

(
2− lim

b→∞

2 ln(b) + 2

b

)
L′H
=
∞
∞

π

(
2− lim

b→∞

2
b

1

)
= π (2− 0)

= 2π cubic units .

(c) We now revolve the region R about the y-axis to form a solid of revolution. Calculate the volume of
the solid or determine if the solid has infinite volume.

Solution. Revolving the vertical strip at x about the y-axis forms a shell with radius r(x) = x and

height h(x) = ln(x)
x . So the volume is

V =

∫ ∞

1

2πr(x)h(x)dx =

∫ ∞

1

2πx
ln(x)

x
dx = 2π

∫ ∞

1

ln(x)dx.

We have previously computed the antiderivative of the integrand using integration by parts and found
that ∫

ln(x)dx = x(ln(x)− 1) + C.

So the volume is

V = 2π lim
b→∞

∫ b

1

ln(x)dx

= 2π lim
b→∞

[x(ln(x)− 1)]
b
1

= 2π lim
b→∞

b(ln(b)− 1)

= ∞,

so the solid has infinite volume .
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