Rutgers University
Math 152

Section 8.8: Improper Integrals - Worksheet Solutions

1. Calculate the following integrals or determine if they diverge.
(a) $\int_{0}^{\infty} e^{-5 x} d x$

Solution.

$$
\begin{aligned}
\int_{0}^{\infty} e^{-5 x} d x & =\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-5 x} d x \\
& =\lim _{b \rightarrow \infty}\left[-\frac{1}{5} e^{-5 x}\right]_{0}^{b} \\
& =\lim _{b \rightarrow \infty}\left(-\frac{1}{5} e^{-5 b}+\frac{1}{5} e^{0}\right) \\
& =\left(-\frac{1}{5} \cdot 0+\frac{1}{5}\right) \\
& =\frac{1}{5}
\end{aligned}
$$

(b) $\int_{0}^{\pi / 4} \csc (x) d x$

Solution. This is a type II improper integral due to the vertical asymptote of $y=\csc (x)$ at $x=0$.

$$
\begin{aligned}
\int_{0}^{\pi / 4} \csc (x) d x & =\lim _{a \rightarrow 0^{+}} \int_{0}^{\pi / 4} \csc (x) d x \\
& =\lim _{a \rightarrow 0^{+}}[-\ln |\csc (x)+\cot (x)|]_{a}^{\pi / 4} \\
& =\lim _{a \rightarrow 0^{+}}(-\ln (\sqrt{2}+1)+\ln |\csc (a)+\cot (a)|) \\
& =\infty
\end{aligned}
$$

since $\cot (a), \csc (a) \rightarrow \infty$ when $a \rightarrow 0^{+}$, so $\ln |\csc (a)+\cot (a)| \rightarrow \infty$ when $a \rightarrow 0^{+}$. Therefore $\int_{0}^{\pi / 4} \csc (x) d x$ diverges.
(c) $\int_{-\infty}^{0} x e^{3 x} d x$

Solution. We can start by finding an antiderivative using integration by parts. We use the parts

$$
\begin{aligned}
& u=x \Rightarrow d u=d x \\
& d v=e^{3 x} d x \Rightarrow v=\frac{e^{3 x}}{3}
\end{aligned}
$$

We obtain

$$
\begin{aligned}
\int x e^{3 x} d x & =\frac{x e^{3 x}}{3}-\int \frac{e^{3 x}}{3} d x \\
& =\frac{x e^{3 x}}{3}-\frac{e^{3 x}}{9}+C \\
& =\frac{(3 x-1) e^{3 x}}{9}+C
\end{aligned}
$$

We can now compute the improper integral.

$$
\begin{aligned}
\int_{-\infty}^{0} x e^{3 x} d x & =\lim _{a \rightarrow-\infty} \int_{a}^{0} x e^{3 x} d x \\
& =\lim _{a \rightarrow-\infty}\left[\frac{(3 x-1) e^{3 x}}{9}\right]_{a}^{0} \\
& =\lim _{a \rightarrow-\infty}\left(-\frac{1}{9}-\frac{(3 a-1) e^{3 a}}{9}\right) \\
& =-\frac{1}{9}-\lim _{a \rightarrow-\infty} \frac{(3 a-1)}{9 e^{-3 a}} \\
& \frac{\mathrm{~L}^{\prime} \mathrm{H}}{\bar{\infty}}-\frac{1}{9}-\lim _{a \rightarrow-\infty} \frac{3}{-27 e^{-3 a}} \\
& =-\frac{1}{9}-0 \\
& =-\frac{1}{9}
\end{aligned}
$$

(d) $\int_{-\infty}^{\infty} \frac{d x}{\left(16+x^{2}\right)^{3 / 2}}$

Solution. We can start by finding an antiderivative of the integrand. For this, we can use the trigonometric substitution $x=4 \tan (\theta), d x=4 \sec (\theta)^{2} d \theta$. The right triangle for this trigonometric substitution has base angle θ so that $\tan (\theta)=\frac{x}{4}$ as shown below.

We get $\left(16+u^{2}\right)^{3 / 2}=\left(16+16 \tan (\theta)^{2}\right)^{3 / 2}=\left(16 \sec (\theta)^{2}\right)^{3 / 2}=64 \sec (\theta)^{3}$, and the integral becomes

$$
\begin{aligned}
\int \frac{d x}{\left(16+x^{2}\right)^{3 / 2}} & =\int \frac{4 \sec (\theta)^{2} d \theta}{64 \sec (\theta)^{3}} \\
& =\frac{1}{16} \int \frac{d \theta}{\sec (\theta)} \\
& =\frac{1}{16} \int \cos (\theta) d \theta \\
& =\frac{1}{16} \sin (\theta)+C
\end{aligned}
$$

In this antiderivative, we can express $\sin (\theta)$ in terms of x using the right triangle above, in which we see that $\sin (\theta)=\frac{x}{\sqrt{16+x^{2}}}$. Thus

$$
\int \frac{d x}{\left(16+x^{2}\right)^{3 / 2}}=\frac{x}{16 \sqrt{16+x^{2}}}+C
$$

We can now compute the improper integral. Observe that the integrand is even, so the integral on $(-\infty, \infty)$ is equal to two times the integral on $[0, \infty)$.

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{d x}{\left(16+x^{2}\right)^{3 / 2}} & =2 \int_{0}^{\infty} \frac{d x}{\left(16+x^{2}\right)^{3 / 2}} \\
& =2 \lim _{b \rightarrow \infty} \int_{0}^{b} \frac{d x}{\left(16+x^{2}\right)^{3 / 2}} \\
& =2 \lim _{b \rightarrow \infty}\left[\frac{x}{16 \sqrt{16+x^{2}}}\right]_{0}^{b} \\
& =2 \lim _{b \rightarrow \infty} \frac{b}{16 \sqrt{16+b^{2}}} \cdot \frac{\frac{1}{b}}{\frac{1}{b}} \\
& =2 \lim _{b \rightarrow \infty} \frac{1}{16 \sqrt{\frac{16+}{b^{2}}}} \\
& =2 \frac{1}{16} \\
& =\frac{1}{8} .
\end{aligned}
$$

(e) $\int_{0}^{1} \ln (x) d x$

Solution. This is a type II improper integral due to the vertical asymptote of $y=\ln (x)$ at $x=0$. First we compute an antiderivative using integration by parts with parts

$$
\begin{aligned}
& u=\ln (x) \Rightarrow d u=\frac{d x}{x} \\
& d v=d x \Rightarrow v=x
\end{aligned}
$$

We obtain

$$
\begin{aligned}
\int \ln (x) d x & =x \ln (x)-\int x \frac{1}{x} d x \\
& =x \ln (x)-\int d x \\
& =x \ln (x)-x+C
\end{aligned}
$$

Next we compute the improper integral.

$$
\begin{aligned}
\int_{0}^{1} \ln (x) d x & =\lim _{a \rightarrow 0^{+}} \int_{a}^{1} \ln (x) d x \\
& =\lim _{a \rightarrow 0^{+}}[x \ln (x)-x]_{a}^{1} \\
& =\lim _{a \rightarrow 0^{+}}(-1-a \ln (a)+a) \\
& =-1-\lim _{a \rightarrow 0^{+}} a \ln (a)+0 \\
& =-1-\lim _{a \rightarrow 0^{+}} \frac{\ln (a)}{\frac{1}{a}} \\
& \frac{\mathrm{~L}^{\prime} \mathrm{H}}{\overline{\mathrm{D}}}-1-\lim _{a \rightarrow 0^{+}} \frac{\frac{1}{a}}{-\frac{1}{a^{2}}} \\
& =-1-\lim _{a \rightarrow 0^{+}}(-a) \\
& =-1-0 \\
& =-1 .
\end{aligned}
$$

(f) $\int_{-2}^{1} \frac{d x}{\sqrt[3]{3 x-2}}$

Solution. This is a type II improper integral due to the vertical asymptote of $y=\frac{1}{\sqrt[3]{3 x-2}}$ at $x=\frac{2}{3}$. Because the vertical asymptote is in the interior of the interval of integration, we need to break-up the integral into a sum of two integrals and compute each of them as a limit. We get

$$
\begin{aligned}
\int_{-2}^{1} \frac{d x}{\sqrt[3]{3 x-2}} & =\int_{-2}^{2 / 3} \frac{d x}{\sqrt[3]{3 x-2}}+\int_{2 / 3}^{1} \frac{d x}{\sqrt[3]{3 x-2}} \\
& =\lim _{b \rightarrow \frac{2}{3}} \int_{-2}^{b} \frac{d x}{\sqrt[3]{3 x-2}}+\lim _{a \rightarrow \frac{2}{3}+} \int_{a}^{1} \frac{d x}{\sqrt[3]{3 x-2}} \\
& =\lim _{b \rightarrow \frac{2-}{3}-}\left[\frac{(3 x-2)^{2 / 3}}{2}\right]_{-2}^{b}+\lim _{a \rightarrow \frac{2}{3}^{+}}\left[\frac{(3 x-2)^{2 / 3}}{2}\right]_{a}^{1} \\
& =\lim _{b \rightarrow \frac{2}{3}-}\left(\frac{(3 b-2)^{2 / 3}}{2}-2\right)+\lim _{a \rightarrow \frac{2}{3}}\left(1-\frac{(3 a-2)^{2 / 3}}{2}\right) \\
& =(0-2)+(1-0) \\
& =-1
\end{aligned}
$$

(g) $\int_{0}^{3 / 2} \frac{d x}{\sqrt{9-4 x^{2}}}$

Solution. This is a type II improper integral due to the vertical asymptote of $y=\frac{1}{\sqrt{9-4 x^{2}}}$ at $x=\frac{3}{2}$.

$$
\begin{aligned}
\int_{0}^{3 / 2} \frac{d x}{\sqrt{9-4 x^{2}}} & =\lim _{b \rightarrow \frac{3}{2}^{-}} \int_{0}^{b} \frac{d x}{\sqrt{9-4 x^{2}}} \\
& =\lim _{b \rightarrow \frac{3}{2}^{-}}\left[\frac{1}{2} \sin ^{-1}\left(\frac{2 x}{3}\right)\right]_{0}^{b} \\
& =\lim _{b \rightarrow \frac{3}{2}^{-}}\left(\frac{1}{2} \sin ^{-1}\left(\frac{2 b}{3}\right)-0\right) \\
& =\frac{1}{2} \sin ^{-1}(1) \\
& =\frac{\pi}{4}
\end{aligned}
$$

(h) $\int_{e}^{\infty} \frac{d x}{x \ln (x)}$

Solution. We use the substitution $u=\ln (x), d u=\frac{d x}{x}$ to compute the antiderivative.

$$
\begin{aligned}
\int \frac{d x}{x \ln (x)} & =\int \frac{d u}{u} \\
& =\ln |u|+C \\
& =\ln |\ln (x)|+C
\end{aligned}
$$

We can now use this antiderivative to compute the improper integral.

$$
\begin{aligned}
\int_{e}^{\infty} \frac{d x}{x \ln (x)} & =\lim _{b \rightarrow \infty} \int_{e}^{b} \frac{d x}{x \ln (x)} \\
& =\lim _{b \rightarrow \infty}[\ln |\ln (x)|]_{e}^{b} \\
& =\lim _{b \rightarrow \infty}(\ln |\ln (b)|-\ln |\ln (e)|) \\
& =\infty
\end{aligned}
$$

since $\ln (b) \rightarrow \infty$ when $b \rightarrow \infty$. Therefore $\int_{e}^{\infty} \frac{d x}{x \ln (x)}$ diverges.
(i) $\int_{0}^{\infty} e^{-x} \sin (x) d x$

Solution. We start by computing an antiderivative, using two successive integration by parts. For the first IBP, the parts are

$$
\begin{aligned}
& u=\sin (x) \Rightarrow d u=\cos (x) d x \\
& d v=e^{-x} d x \Rightarrow v=-e^{-x}
\end{aligned}
$$

This gives

$$
\begin{aligned}
\int e^{-x} \sin (x) d x & =-e^{-x} \sin (x)-\int-e^{-x} \cos (x) d x \\
& =-e^{-x} \sin (x)+\int e^{-x} \cos (x) d x
\end{aligned}
$$

The second IBP uses the parts

$$
\begin{aligned}
& u=\cos (x) \Rightarrow d u=-\sin (x) d x \\
& d v=e^{-x} d x \Rightarrow v=-e^{-x}
\end{aligned}
$$

We get
$\int e^{-x} \sin (x) d x=-e^{-x} \sin (x)-e^{-x} \cos (x)-\int\left(-e^{-x}\right)(-\sin (x)) d x=-e^{-x} \sin (x)-e^{-x} \cos (x)-\int e^{-x} \sin (x) d x$.

We can solve this relation for the unknown integral by moving the term $-\int e^{-x} \sin (x) d x$ to the left-hand side and we get

$$
\begin{aligned}
& 2 \int e^{-x} \sin (x) d x=-e^{-x} \sin (x)-e^{-x} \cos (x) \\
& \Rightarrow \int e^{-x} \sin (x) d x=-\frac{e^{-x}(\sin (x)+\cos (x))}{2}+C
\end{aligned}
$$

We can now compute the improper integral.

$$
\begin{aligned}
\int_{0}^{\infty} e^{-x} \sin (x) d x & =\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-x} \sin (x) d x \\
& =\lim _{b \rightarrow \infty}\left[-\frac{e^{-x}(\sin (x)+\cos (x))}{2}\right]_{0}^{b} \\
& =\lim _{b \rightarrow \infty}\left(-\frac{e^{-b}(\sin (b)+\cos (b))}{2}+\frac{1}{2}\right) \\
& =\frac{1}{2}-\lim _{b \rightarrow \infty} \frac{\sin (b)+\cos (b)}{e^{b}}
\end{aligned}
$$

This last limit can be computed using the Sandwich Theorem. We have the inequalities

$$
\begin{aligned}
& -2 \leqslant \sin (b)+\cos (b) \leqslant 2 \\
\Rightarrow \quad & -\frac{2}{e^{b}} \leqslant \frac{\sin (b)+\cos (b)}{e^{b}} \leqslant \frac{2}{e^{b}}
\end{aligned}
$$

Since $\lim _{b \rightarrow \infty} \frac{2}{e^{b}}=0=\lim _{b \rightarrow \infty}-\frac{2}{e^{b}}$, it follows that $\lim _{b \rightarrow \infty} \frac{\sin (b)+\cos (b)}{e^{b}}=0$. Hence

$$
\int_{0}^{\infty} e^{-x} \sin (x) d x=\frac{1}{2} \text {. }
$$

2. Use a convergence test to determine if the following improper integrals converge or diverge.
(a) $\int_{3}^{\infty} \frac{d x}{x e^{x}}$

Solution. We use the DCT. Observe that for x in $[3, \infty)$, we have

$$
\begin{aligned}
0 & \leqslant e^{x} \leqslant x e^{x} \\
\Rightarrow \quad & 0 \leqslant \frac{1}{x e^{x}} \leqslant \frac{1}{e^{x}}
\end{aligned}
$$

Furthermore, $\int_{3}^{\infty} \frac{d x}{e^{x}}$ converges since

$$
\begin{aligned}
\int_{3}^{\infty} \frac{d x}{e^{x}} & =\lim _{b \rightarrow \infty} \int_{3}^{b} e^{-x} d x \\
& =\lim _{b \rightarrow \infty}\left(-e^{-b}+e^{3}\right) \\
& =e^{3}
\end{aligned}
$$

Thus, $\int_{3}^{\infty} \frac{d x}{x e^{x}}$ converges as well.
Remark: the inequality

$$
0 \leqslant \frac{1}{x e^{x}} \leqslant \frac{1}{x}
$$

is also true, but it does not help establish the convergence of $\int_{3}^{\infty} \frac{d x}{x e^{x}}$ since the integral of the "bigger function" $\int_{3}^{\infty} \frac{d x}{x}$ diverges (type I p-integral with $p=1$).
(b) $\int_{1}^{\infty} \frac{d x}{x^{2}+3 x+1}$

Solution. We use the DCT. Observe that for x in $[1, \infty)$ we have the inequalities

$$
\begin{aligned}
0 & \leqslant x^{2} \leqslant x^{2}+3 x+1 \\
\Rightarrow \quad 0 & \leqslant \frac{1}{x^{2}+3 x+1} \leqslant \frac{1}{x^{2}} .
\end{aligned}
$$

Furthermore, the integral $\int_{1}^{\infty} \frac{d x}{x^{2}}$ converges since it is a type I p-integral with $p=2>1$. Therefore, $\int_{1}^{\infty} \frac{d x}{x^{2}+3 x+1}$ converges as well.

Remark. We can also use the LCT, observing that

$$
\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}+3 x+1}}{\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{1}{1+3 / x+1 / x^{2}}=1>0
$$

and the integral $\int_{1}^{\infty} \frac{d x}{x^{2}}$ converges since it is a type I p-integral with $p=2>1$.
(c) $\int_{4}^{\infty} \frac{\cos (x)+5}{x^{3 / 5}} d x$

Solution. We use the DCT, observing that for x in $[4, \infty)$ we have

$$
\begin{aligned}
& -1 \leqslant \cos (x) \\
\Rightarrow & 0 \leqslant 4 \leqslant \cos (x)+5 \\
\Rightarrow & 0 \leqslant \frac{4}{x^{3 / 5}} \leqslant \frac{\cos (x)+5}{x^{3 / 5}}
\end{aligned}
$$

Furthermore, the integral $\int_{4}^{\infty} \frac{4}{x^{3 / 5}} d x$ diverges since it is a type I p-integral with $p=\frac{3}{5} \leqslant 1$. It follows that $\int_{4}^{\infty} \frac{\cos (x)+5}{x^{3 / 5}} d x$ diverges as well.

Remark: we would not be able to use the LCT to compare with the divergent p-integral integral $\int_{4}^{\infty} \frac{d x}{x^{3 / 5}}$ since

$$
\lim _{x \rightarrow \infty} \frac{\frac{\cos (x)+5}{x^{3 / 5}}}{\frac{1}{x^{3 / 5}}}=\lim _{x \rightarrow \infty}(\cos (x)+5) \text { does not exist. }
$$

(d) $\int_{0}^{1} \frac{d x}{\sqrt{x}+x^{2}}$

Solution. We use the DCT, observing that for x in $(0,1]$ we have

$$
\begin{aligned}
& 0 \leqslant \sqrt{x} \leqslant \sqrt{x}+x^{2} \\
\Rightarrow \quad & 0 \leqslant \frac{1}{x^{2}+\sqrt{x}} \leqslant \frac{1}{\sqrt{x}}
\end{aligned}
$$

Furthermore, the integral $\int_{0}^{1} \frac{d x}{\sqrt{x}}$ converges since it is a type II p-integral with $p=\frac{1}{2}<1$. It follows that $\int_{0}^{1} \frac{d x}{x^{2}+\sqrt{x}}$ converges as well.

Remark 1. The inequality

$$
0 \leqslant \frac{1}{x^{2}+\sqrt{x}} \leqslant \frac{1}{x^{2}}
$$

is also true, but it does not help establish the convergence of $\int_{0}^{1} \frac{d x}{x^{2}+\sqrt{x}}$ since the integral of the "bigger function" $\int_{0}^{1} \frac{d x}{x^{2}}$ diverges (type II p-integral with $p=2 \geqslant 1$).
Remark 2. We could have also used the LCT to compare with the convergent type II p-integral

$$
\int_{0}^{1} \frac{d x}{\sqrt{x}}, \text { remarking that }
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x^{2}+\sqrt{x}}}{\frac{1}{\sqrt{x}}} & =\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{x^{2}+\sqrt{x}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{x^{2}+\sqrt{x}} \cdot \frac{\frac{1}{\sqrt{x}}}{\frac{1}{\sqrt{x}}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{1}{x^{3 / 2}+1} \\
& =1>0
\end{aligned}
$$

(e) $\int_{5}^{\infty} \frac{x d x}{x^{4}-1}$

Solution.We use the LCT, comparing with $\frac{1}{x^{3}}$. We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\frac{x}{x^{4}-1}}{\frac{1}{x^{3}}} & =\lim _{x \rightarrow \infty} \frac{x^{4}}{x^{4}-1} \\
& =\lim _{x \rightarrow \infty} \frac{x^{4}}{x^{4}-1} \cdot \frac{\frac{1}{x^{4}}}{\frac{1}{x^{4}}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{1-\frac{1}{x^{4}}} \\
& =1>0
\end{aligned}
$$

Furthermore, the integral $\int_{5}^{\infty} \frac{d x}{x^{3}}$ converges since it is a type I p-integral with $p=3>1$. Hence, $\int_{5}^{\infty} \frac{x d x}{x^{4}-1}$ converges as well.
Remark. The DCT cannot be used to compare with the convergent type I p-integral $\int_{5}^{\infty} \frac{d x}{x^{3}}$ since we have the inequalities

$$
\begin{aligned}
& 0 \leqslant x^{4}-1 \leqslant x^{4} \\
\Rightarrow \quad & 0 \leqslant \frac{1}{x^{4}} \leqslant \frac{1}{x^{4}-1} \\
\Rightarrow \quad 0 & \leqslant \frac{1}{x^{3}} \leqslant \frac{x}{x^{4}-1}
\end{aligned}
$$

and knowing that the integral of the "smaller function" converges does not say anything about the integral of the "bigger function".
(f) $\int_{1}^{\infty} \frac{x^{3}+5 x^{2}+1}{\sqrt{x^{7}+4 x+2}} d x$

Solution. We use the LCT. To find a good function to compare to, we keep the terms of the numerator and denominator that are dominant when $x \rightarrow \infty$:

$$
\frac{x^{3}+5 x^{2}+1}{\sqrt{x^{7}+4 x+2}} \sim \frac{x^{3}}{\sqrt{x^{7}}}=\frac{x^{3}}{x^{7 / 2}}=\frac{1}{x^{1 / 2}} .
$$

Now that we have found our reference function, we properly establish the limit comparison.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\frac{x^{3}+5 x^{2}+1}{\sqrt{x^{7}+4 x+2}}}{\frac{1}{x^{1 / 2}}} & =\lim _{x \rightarrow \infty} \frac{x^{7 / 2}+5 x^{5 / 2}+x^{1 / 2}}{\sqrt{x^{7}+4 x+2}} \\
& =\lim _{x \rightarrow \infty} \frac{x^{7 / 2}+5 x^{5 / 2}+x^{1 / 2}}{\sqrt{x^{7}+4 x+2}} \cdot \frac{\frac{1}{x^{7 / 2}}}{\frac{1}{x^{7 / 2}}} \\
& =\lim _{x \rightarrow \infty} \frac{1+\frac{5}{x^{2}}+\frac{1}{x^{3}}}{\sqrt{1+\frac{4}{x^{6}}+\frac{2}{x^{7}}}} \\
& =1>0 .
\end{aligned}
$$

We also know that the integral $\int_{1}^{\infty} \frac{d x}{x^{1 / 2}}$ diverges since it is a type I p-integral with $p=\frac{1}{2} \leqslant 1$.
Therefore, $\int_{1}^{\infty} \frac{x^{3}+5 x^{2}+1}{\sqrt{x^{7}+4 x+2}} d x$ diverges as well.
3. Consider the unbounded region \mathcal{R} between the graph of $y=\frac{\ln (x)}{x}$ and the x-axis for $x \geqslant 1$.
(a) Find the area of the region \mathcal{R} or determine if \mathcal{R} has infinite area.

Solution. The area of \mathcal{R} is given by

$$
A=\int_{1}^{\infty} \frac{\ln (x)}{x} d x
$$

The antiderivative of the integrand can be found with the substitution $u=\ln (x), d u=\frac{d x}{x}$, which gives

$$
\int \frac{\ln (x)}{x} d x=\int u d u=\frac{u^{2}}{2}+C=\frac{\ln (x)^{2}}{2}+C
$$

We can use this to compute the area, as follows

$$
\begin{aligned}
A & =\int_{1}^{\infty} \frac{\ln (x)}{x} d x \\
& =\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\ln (x)}{x} d x \\
& =\lim _{b \rightarrow \infty}\left[\frac{\ln (x)^{2}}{2}\right]_{1}^{b} \\
& =\lim _{b \rightarrow \infty} \frac{\ln (b)^{2}}{2} \\
& =\infty
\end{aligned}
$$

So \mathcal{R} has infinite area.
(b) We now revolve the region \mathcal{R} about the x-axis to form a solid of revolution. Calculate the volume of the solid or determine if the solid has infinite volume.

Solution. Revolving the vertical strip at x in the region about the x-axis forms a disk of radius $r(x)=\frac{\ln (x)}{x}$. So the volume is given by

$$
V=\int_{1}^{\infty} \pi r(x)^{2} d x=\pi \int_{1}^{\infty} \frac{\ln (x)^{2}}{x^{2}} d x
$$

To compute the antiderivative of the integrand, we use two successive IPBs. The first one will use the parts

$$
\begin{aligned}
& u=\ln (x)^{2} \Rightarrow d u=\frac{2 \ln (x) d x}{x} \\
& d v=\frac{d x}{x^{2}} \Rightarrow v=-\frac{1}{x}
\end{aligned}
$$

This gives

$$
\begin{aligned}
\int \frac{\ln (x)^{2}}{x^{2}} d x & =-\frac{\ln (x)^{2}}{x}-\int \frac{2 \ln (x)}{x}\left(-\frac{1}{x}\right) d x \\
& =-\frac{\ln (x)^{2}}{x}+2 \int \frac{\ln (x)}{x^{2}} d x
\end{aligned}
$$

For the second IBP, we take

$$
\begin{aligned}
& u=\ln (x) \Rightarrow d u=\frac{d x}{x} \\
& d v=\frac{d x}{x^{2}} \Rightarrow v=-\frac{1}{x}
\end{aligned}
$$

We obtain

$$
\begin{aligned}
\int \frac{\ln (x)^{2}}{x^{2}} d x & =-\frac{\ln (x)^{2}}{x}+2\left(-\frac{\ln (x)}{x}-\int \frac{1}{x}\left(-\frac{1}{x}\right) d x\right) \\
& =-\frac{\ln (x)^{2}}{x}-2 \frac{\ln (x)}{x}+2 \int \frac{1}{x^{2}} d x \\
& =-\frac{\ln (x)^{2}}{x}-2 \frac{\ln (x)}{x}-\frac{2}{x}+C \\
& =-\frac{\ln (x)^{2}+2 \ln (x)+2}{x}+C .
\end{aligned}
$$

We can now use this to compute the volume.

$$
\begin{aligned}
V & =\pi \int_{1}^{\infty} \frac{\ln (x)^{2}}{x^{2}} d x \\
& =\pi \lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\ln (x)^{2}}{x^{2}} d x \\
& =\pi \lim _{b \rightarrow \infty}\left[-\frac{\ln (x)^{2}+2 \ln (x)+2}{x}\right]_{1}^{b} \\
& =\pi \lim _{b \rightarrow \infty}\left(2-\frac{\ln (b)^{2}+2 \ln (b)+2}{b}\right) \\
& =\pi\left(2-\lim _{b \rightarrow \infty} \frac{\ln (b)^{2}+2 \ln (b)+2}{b}\right) .
\end{aligned}
$$

To compute the remaining limit, we use L'Hôpital's Rule twice for the indeterminate form $\frac{\infty}{\infty}$.

$$
\begin{aligned}
& V \underset{\substack{\frac{L^{\prime}}{\infty}} \frac{L^{\prime} \mathrm{H}}{\infty}}{ } \pi\left(2-\lim _{b \rightarrow \infty} \frac{2 \frac{\ln (b)}{b}+\frac{2}{b}}{1}\right) \\
& \quad=\pi\left(2-\lim _{b \rightarrow \infty} \frac{2 \ln (b)+2}{b}\right) \\
& \quad \stackrel{\mathrm{L}}{ }_{\frac{\mathrm{L}^{\prime} \mathrm{H}}{\infty}}^{\infty} \pi\left(2-\lim _{b \rightarrow \infty} \frac{\frac{2}{b}}{1}\right) \\
& \quad=\pi(2-0) \\
& \quad=2 \pi \text { cubic units. }
\end{aligned}
$$

(c) We now revolve the region \mathcal{R} about the y-axis to form a solid of revolution. Calculate the volume of the solid or determine if the solid has infinite volume.

Solution. Revolving the vertical strip at x about the y-axis forms a shell with radius $r(x)=x$ and height $h(x)=\frac{\ln (x)}{x}$. So the volume is

$$
V=\int_{1}^{\infty} 2 \pi r(x) h(x) d x=\int_{1}^{\infty} 2 \pi x \frac{\ln (x)}{x} d x=2 \pi \int_{1}^{\infty} \ln (x) d x
$$

We have previously computed the antiderivative of the integrand using integration by parts and found that

$$
\int \ln (x) d x=x(\ln (x)-1)+C
$$

So the volume is

$$
\begin{aligned}
V & =2 \pi \lim _{b \rightarrow \infty} \int_{1}^{b} \ln (x) d x \\
& =2 \pi \lim _{b \rightarrow \infty}[x(\ln (x)-1)]_{1}^{b} \\
& =2 \pi \lim _{b \rightarrow \infty} b(\ln (b)-1) \\
& =\infty
\end{aligned}
$$

so the solid has infinite volume.

