Rutgers University
Math 152

Calculus 1 Review Worksheet - Solutions

1. Simplify the following expressions. Your answer should not involve any trigonometric or inverse trigonometric functions.
(a) $\cos ^{-1}\left(\frac{1}{2}\right)$

Solution. Recall that $\cos ^{-1}(x)$ is the angle θ in $[0, \pi]$ such that $\cos (\theta)=x$. Therefore

$$
\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}
$$

(b) $\sin ^{-1}\left(\sin \left(\frac{7 \pi}{4}\right)\right)$

Solution. Recall that $\sin ^{-1}(x)$ is the angle θ in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ such that $\sin (\theta)=x$. Since $\sin \left(\frac{7 \pi}{4}\right)=$ $-\frac{\sqrt{2}}{2}$, we deduce that

$$
\sin ^{-1}\left(\sin \left(\frac{7 \pi}{4}\right)\right)=-\frac{\pi}{4}
$$

(c) $\cos \left(\sin ^{-1}(x)\right)$

Solution. Consider a right triangle with acute angle $\theta=\sin ^{-1}(x)$. Then $\sin (\theta)=x=\frac{\text { opp }}{\text { hyp }}$. So we can choose the sides to be opp $=x$ and hyp $=1$ as shown below.

The Pythagoran identity then gives adj $=\sqrt{\text { hyp }^{2}-\mathrm{opp}^{2}}=\sqrt{1-x^{2}}$. Therefore

$$
\cos \left(\sin ^{-1}(x)\right)=\frac{\text { adj }}{\text { hyp }}=\sqrt{1-x^{2}} .
$$

(d) $\sin \left(2 \cos ^{-1}(x)\right)$

Solution. First, using the trigonometric identity $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$, we have

$$
\sin \left(2 \cos ^{-1}(x)\right)=2 \sin \left(\sin ^{-1}(x)\right) \sin \left(\cos ^{-1}(x)\right)=2 x \sin \left(\cos ^{-1}(x)\right)
$$

To simplify $\sin \left(\cos ^{-1}(x)\right)$, we consider a right triangle with acute angle $\theta=\cos ^{-1}(x)$. Then $\cos (\theta)=$ $x=\frac{\text { adj }}{\text { hyp }}$. So we can choose the sides to be adj $=x$ and hyp $=1$ as shown below.

The Pythagoran identity then gives opp $=\sqrt{\mathrm{hyp}^{2}-\mathrm{adj}^{2}}=\sqrt{1-x^{2}}$. Therefore

$$
\sin \left(\cos ^{-1}(x)\right)=\frac{\text { opp }}{\text { hyp }}=\sqrt{1-x^{2}}
$$

We conclude that

$$
\sin \left(2 \cos ^{-1}(x)\right)==2 x \sqrt{1-x^{2}} .
$$

(e) $\sec \left(\tan ^{-1}\left(\frac{x}{3}\right)\right)$

Solution. Consider a right triangle with acute angle $\theta=\tan ^{-1}\left(\frac{x}{3}\right)$. Then $\tan (\theta)=\frac{x}{3}=\frac{\mathrm{opp}}{\mathrm{adj}}$. So we can choose the sides to be opp $=x$ and $\operatorname{adj}=3$ as shown below.

The Pythagoran identity then gives hyp $=\sqrt{\mathrm{adj}^{2}+\mathrm{opp}^{2}}=\sqrt{9+x^{2}}$. Therefore

$$
\sec \left(\tan ^{-1}\left(\frac{x}{3}\right)\right)=\frac{\text { hyp }}{\operatorname{adj}}=\frac{\sqrt{9+x^{2}}}{3}
$$

(f) $\sin \left(\cot ^{-1}\left(\frac{2}{\sqrt{x}}\right)\right)$

Solution. Consider a right triangle with acute angle $\theta=\cot ^{-1}\left(\frac{2}{\sqrt{x}}\right)$. Then $\cot (\theta)=\frac{2}{\sqrt{x}}=\frac{\mathrm{adj}}{\mathrm{opp}}$. So we can choose the sides to be adj $=2$ and opp $=\sqrt{x}$ as shown below.

The Pythagoran identity then gives hyp $=\sqrt{\mathrm{adj}^{2}+\mathrm{opp}^{2}}=\sqrt{4+x}$. Therefore

$$
\sin \left(\cot ^{-1}\left(\frac{2}{\sqrt{x}}\right)\right)=\frac{\mathrm{opp}}{\mathrm{hyp}}=\frac{\sqrt{x}}{\sqrt{4+x}}
$$

2. Calculate the following limits.
(a) $\lim _{x \rightarrow \infty} \frac{\ln (x)^{2}}{\sqrt{x}}$

Solution. We can compute this limit using L'Hôpital's Rule twice with the indeterminate form $\frac{\infty}{\infty}$. This gives

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\ln (x)^{2}}{\sqrt{x}} \stackrel{\stackrel{L^{\prime} H}{\bar{\infty}}}{\stackrel{\infty}{\infty}} \lim _{x \rightarrow \infty} \frac{2 \ln (x) \frac{1}{x}}{\frac{1}{2 \sqrt{x}}} \\
&=\lim _{x \rightarrow \infty} \frac{4 \ln (x)}{\sqrt{x}} \\
& \frac{\mathrm{~L}^{\prime} H}{\bar{\infty}} \lim _{x \rightarrow \infty} \frac{\frac{4}{x}}{\frac{1}{2 \sqrt{x}}} \\
&=\lim _{x \rightarrow \infty} \frac{8}{\sqrt{x}} \\
&=0 .
\end{aligned}
$$

(b) $\lim _{x \rightarrow 0} \frac{5^{x}-3^{x}}{\sin (2 x)}$

Solution. This limit is an indeterminate form $\frac{0}{0}$. We can resolve the indeterminate form using L'Hôpital's Rule, remembering that for a positive constant a, we have

$$
\frac{d}{d x} a^{x}=\ln (a) a^{x}
$$

We obtain

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{5^{x}-3^{x}}{\sin (2 x)} & \stackrel{\frac{L}{0}+\mathrm{H}}{\underset{0}{0}} \lim _{x \rightarrow 0} \frac{\ln (5) 5^{x}-\ln (3) 3^{x}}{2 \cos (2 x)} \\
& =\frac{\ln (5) 5^{0}-\ln (3)^{0}}{2 \cos (2 \cdot 0)} \\
& =\frac{\ln (5)-\ln (3)}{2} .
\end{aligned}
$$

(c) $\lim _{x \rightarrow \infty} \tan ^{-1}\left(x^{2}-x^{3}\right)$

Solution. We start by investigating the behavior of the "inside" $x^{2}-x^{3}$ as $x \rightarrow \infty$. Since $\lim _{x \rightarrow \infty}\left(x^{2}-x^{3}\right)$ is an indeterminate form $\infty-\infty$, we will need a bit of algebra to be able to compute the limit. We have

$$
\lim _{x \rightarrow \infty}\left(x^{2}-x^{3}\right)=\lim _{x \rightarrow \infty} x^{3}\left(\frac{1}{x}-1\right)=" \infty(0-1) "=-\infty .
$$

Therefore, letting $u=x^{2}-x^{3}$, we have $u \rightarrow-\infty$ as $x \rightarrow \infty$, so

$$
\lim _{x \rightarrow \infty} \tan ^{-1}\left(x^{2}-x^{3}\right)=\lim _{u \rightarrow-\infty} \tan ^{-1}(u)=-\frac{\pi}{2} .
$$

(d) $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{x}$

Solution. This limit is an indeterminate power 1^{∞}. Warning: limits of the form 1^{∞} need not be equal to 1 ! We can resolve the indeterminate form by rewriting the power with an exponential using the formula

$$
a^{b}=e^{b \ln (a)}
$$

and applying L'Hôpital's Rule in the resulting exponent. This gives

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{x} & =\lim _{x \rightarrow \infty} e^{x \ln \left(1+\frac{2}{x}\right)} \\
& =e^{\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{2}{x}\right)}{\frac{1}{x}}} \\
& \frac{\mathrm{~L}^{\prime} \cdot \mathrm{H}}{\overline{\frac{1}{0}}} e^{\lim _{x \rightarrow \infty} \frac{-\frac{2}{x^{2}} \cdot \frac{1}{1+\frac{2}{x}}}{-\frac{1}{x^{2}}}} \\
& =e^{\lim _{x \rightarrow \infty} \frac{2}{1+\frac{2}{x}}} \\
& =e^{2} .
\end{aligned}
$$

(e) $\lim _{x \rightarrow-\infty} \frac{2 x+3 \cos (x)}{5 x}$

Solution. This limit is an indeterminate form $\frac{\infty}{\infty}$. However, we cannot use L'Hôpital's Rule here. This is because L'Hôpital's Rule only applies if the resulting limit exists or is infinite, but here, the resulting limit

$$
\lim _{x \rightarrow-\infty} \frac{2-3 \sin (x)}{5}
$$

does not exist. The Squeeze (or Sandwich) Theorem will work for this limit. Since $-1 \leqslant \cos (x) \leqslant 1$ for all x, we have

$$
\frac{2 x-3}{5 x} \leqslant \frac{2 x+3 \cos (x)}{5 x} \leqslant \frac{2 x+3}{5 x}
$$

for any $x \neq 0$. Furthermore, we have

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{2 x-3}{5 x}=\lim _{x \rightarrow \infty} \frac{2}{5}-\frac{3}{5 x}=\frac{2}{5} \\
& \lim _{x \rightarrow-\infty} \frac{2 x+3}{5 x}=\lim _{x \rightarrow \infty} \frac{2}{5}+\frac{3}{5 x}=\frac{2}{5}
\end{aligned}
$$

Since the two limits are equal, we conclude that

$$
\lim _{x \rightarrow-\infty} \frac{2 x+3 \cos (x)}{5 x}=\frac{2}{5} .
$$

(f) $\lim _{x \rightarrow \infty} x^{1 / x}$

Solution. This limit is an indeterminate power ∞^{0}. Warning: limits of the form ∞^{0} need not be equal to 1 ! We can resolve the indeterminate form by rewriting the power with an exponential using the formula

$$
a^{b}=e^{b \ln (a)}
$$

and applying L'Hôpital's Rule in the resulting exponent. This gives

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x^{1 / x} & =\lim _{x \rightarrow \infty} e^{\frac{\ln (x)}{x}} \\
& =e^{\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}} \\
& \frac{\text { L.H }}{}=e^{\lim _{x \rightarrow \infty} \frac{1 / x}{1}} \\
& =e^{0} \\
& =1 .
\end{aligned}
$$

3. Find the horizontal asymptotes of the following functions.
(a) $f(x)=\frac{11 x^{3}+2 x-1}{2 x^{3}-x^{2}+3}$

Solution. This function is rational. We will be able to compute its limits at infinity after dividing the numerator and denominator by the highest power of x appearing in the expression, here x^{3}. This gives

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{11 x^{3}+2 x-1}{2 x^{3}-x^{2}+3} \cdot \frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{11+\frac{2}{x^{2}}-\frac{1}{x^{3}}}{2-\frac{1}{x}+\frac{3}{x^{3}}}=\frac{11}{2} \\
& \lim _{x \rightarrow-\infty} \frac{11 x^{3}+2 x-1}{2 x^{3}-x^{2}+3} \cdot \frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}}=\lim _{x \rightarrow-\infty} \frac{11+\frac{2}{x^{2}}-\frac{1}{x^{3}}}{2-\frac{1}{x}+\frac{3}{x^{3}}}=\frac{11}{2}
\end{aligned}
$$

Therefore, the only horizontal asymptote of f is $y=\frac{11}{2}$.
(b) $f(x)=\frac{5 x+\sqrt{16 x^{2}+25}}{18 x-7}$

Solution. Note that

$$
\sqrt{16 x^{2}+25}=\sqrt{x^{2}} \sqrt{16+\frac{25}{x^{2}}}=|x| \sqrt{16+\frac{25}{x^{2}}}
$$

When $x \rightarrow \infty$, we have $|x|=x$, so

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{5 x+\sqrt{16 x^{2}+25}}{18 x-7} & =\lim _{x \rightarrow \infty} \frac{5 x+|x| \sqrt{16+\frac{25}{x^{2}}}}{18 x-7} \\
& =\lim _{x \rightarrow \infty} \frac{5 x+x \sqrt{16+\frac{25}{x^{2}}}}{18 x-7} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{5+\sqrt{16+\frac{25}{x^{2}}}}{18-\frac{7}{x}} \\
& =\frac{5+\sqrt{16}}{18} \\
& =\frac{1}{2}
\end{aligned}
$$

When $x \rightarrow-\infty$, we have $|x|=-x$, so

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{5 x+\sqrt{16 x^{2}+25}}{18 x-7} & =\lim _{x \rightarrow \infty} \frac{5 x+|x| \sqrt{16+\frac{25}{x^{2}}}}{18 x-7} \\
& =\lim _{x \rightarrow \infty} \frac{5 x-x \sqrt{16+\frac{25}{x^{2}}}}{18 x-7} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{5-\sqrt{16+\frac{25}{x^{2}}}}{18-\frac{7}{x}} \\
& =\frac{5-\sqrt{16}}{18} \\
& =\frac{1}{18}
\end{aligned}
$$

Therefore the two horizontal asymptotes of f are $y=\frac{1}{18}, y=\frac{1}{2}$.
(c) $f(x)=\frac{3 e^{2 x}-2 e^{x}+4 x^{2}}{x^{2}-6 e^{2 x}}$

Solution. When $x \rightarrow \infty$, the dominant term in the expression is $e^{2 x}$, so we will divide numerator and denominator by $e^{2 x}$ to compute the limit when $x \rightarrow \infty$. We obtain

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{3 e^{2 x}-2 e^{x}+4 x^{2}}{x^{2}-6 e^{2 x}} & =\lim _{x \rightarrow \infty} \frac{3 e^{2 x}-2 e^{x}+4 x^{2}}{x^{2}-6 e^{2 x}} \cdot \frac{\frac{1}{e^{2 x}}}{\frac{1}{e^{2 x}}} \\
& =\lim _{x \rightarrow \infty} \frac{3-\frac{2}{e^{x}}+\frac{4 x^{2}}{e^{2 x}}}{\frac{x^{2}}{e^{2 x}}-6}
\end{aligned}
$$

Using L'Hôpital's Rule, we have

$$
\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{2 x}} \underset{\substack{\infty}}{\stackrel{\text { L'H }}{\infty}} \lim _{x \rightarrow \infty} \frac{2 x}{2 e^{2 x}} \underset{\substack{\frac{\infty}{\infty}}}{\stackrel{\text { L'H }}{x \rightarrow \infty}} \lim _{x \rightarrow \infty} \frac{2}{4 e^{2 x}}=0
$$

Therefore,

$$
\lim _{x \rightarrow \infty} \frac{3 e^{2 x}-2 e^{x}+4 x^{2}}{x^{2}-6 e^{2 x}}=\lim _{x \rightarrow \infty} \frac{3-\frac{2}{e^{x}}+\frac{4 x^{2}}{e^{2 x}}}{\frac{x^{2}}{e^{2 x}}-6}=\frac{3}{-6}=-\frac{1}{2}
$$

When $x \rightarrow-\infty$, the dominant term is x^{2} as $e^{x}, e^{2 x} \rightarrow 0$. So we will divide the numerator and denominator by x^{2} to compute the limit when $x \rightarrow-\infty$. This gives

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{3 e^{2 x}-2 e^{x}+4 x^{2}}{x^{2}-6 e^{2 x}} & =\lim _{x \rightarrow-\infty} \frac{3 e^{2 x}-2 e^{x}+4 x^{2}}{x^{2}-6 e^{2 x}} \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow-\infty} \frac{\frac{3 e^{2 x}}{x^{2}}-\frac{2 e^{x}}{x^{2}}+4}{1-\frac{6 e^{2 x}}{x^{2}}} \\
& =4
\end{aligned}
$$

Note that $\lim _{x \rightarrow-\infty} \frac{e^{x}}{x^{2}}=\lim _{x \rightarrow-\infty} \frac{e^{2 x}}{x^{2}}=" \frac{0}{\infty} "=0$. These are not indeterminate forms and we cannot apply L'Hôpital's Rule (nor would we need to).
Therefore, the two horizontal asymptotes of the function f are $y=-\frac{1}{2}, y=4$.
4. Calculate the following indefinite or definite integrals.
(a) $\int(3 x+1)\left(x^{2}-\frac{5}{x}\right) d x$

Solution. We fully distribute the integrand, then use the power rule. This gives

$$
\begin{aligned}
\int(3 x+1)\left(x^{2}-\frac{5}{x}\right) d x & =\int\left(3 x^{3}+x^{2}-15-\frac{5}{x}\right) d x \\
& =\frac{3}{4} x^{4}+\frac{1}{3} x^{3}-15 x-5 \ln |x|+C
\end{aligned}
$$

(b) $\int x^{3} \sin \left(x^{4}+2\right) d x$

Solution. We use the substitution $u=x^{4}+2, d u=4 x^{3} d x$. Therefore, $x^{3} d x=\frac{d u}{4}$, and we obtain

$$
\begin{aligned}
\int x^{3} \sin \left(x^{4}+2\right) d x & =\int \frac{1}{4} \sin (u) d u \\
& =-\frac{1}{4} \cos (u)+C \\
& =-\frac{1}{4} \cos \left(x^{4}+2\right)+C
\end{aligned}
$$

(c) $\int_{0}^{1} \frac{x^{3}}{\sqrt{3+x^{2}}} d x$

Solution 1. We use the substitution $u=3+x^{2}$. So $d u=2 x d x$, that is $x d x=\frac{d u}{2}$. The extraneous factor x^{2} in the numerator can be expressed in terms of u using $x^{2}=u-3$. Finally, the bounds become

$$
\begin{aligned}
& x=0 \Rightarrow u=3+0^{2}=3 \\
& x=1 \Rightarrow u=3+1^{2}=4
\end{aligned}
$$

So the integral becomes

$$
\begin{aligned}
\int_{0}^{1} \frac{x^{3}}{\sqrt{3+x^{2}}} d x & =\int_{0}^{1} \frac{x^{2}}{\sqrt{3+x^{2}}} x d x \\
& =\int_{3}^{4} \frac{u-3}{2 \sqrt{u}} d u \\
& =\int_{3}^{4}\left(\frac{1}{2} \sqrt{u}-\frac{3}{2 \sqrt{u}}\right) d u \\
& =\left[\frac{1}{2} \cdot \frac{2}{3} u^{3 / 2}-3 \sqrt{u}\right]_{3}^{4} \\
& =\left(\frac{1}{3} 4^{3 / 2}-3 \sqrt{4}\right)-\left(\frac{1}{3} 3^{3 / 2}-3 \sqrt{3}\right) \\
& =2 \sqrt{3}-\frac{10}{3}
\end{aligned}
$$

Solution 2. We use the substitution $u=\sqrt{3+x^{2}}$. So $d u=\frac{x d x}{\sqrt{3+x^{2}}}$. The extraneous factor x in the numerator can be expressed in terms of u using $x^{2}=u^{2}-3$. Finally, the bounds become

$$
\begin{aligned}
& x=0 \Rightarrow u=\sqrt{3+0^{2}}=\sqrt{3}, \\
& x=1 \Rightarrow u=\sqrt{3+1^{2}}=2 .
\end{aligned}
$$

So the integral becomes

$$
\begin{aligned}
\int_{0}^{1} \frac{x^{3}}{\sqrt{3+x^{2}}} d x & =\int_{0}^{1} x^{2} \frac{x d x}{\sqrt{3+x^{2}}} \\
& =\int_{\sqrt{3}}^{2}\left(u^{2}-3\right) d u \\
& =\left[\frac{1}{3} u^{3}-3 u\right]_{\sqrt{3}}^{2} \\
& =\left(\frac{1}{3} 2^{3}-3 \cdot 2\right)-\left(\frac{1}{3} \sqrt{3}^{3}-3 \sqrt{3}\right) \\
& =2 \sqrt{3}-\frac{10}{3} .
\end{aligned}
$$

(d) $\int t \sec ^{2}\left(3 t^{2}\right) e^{7 \tan \left(3 t^{2}\right)} d t$

Solution. We use the substitution $u=7 \tan \left(3 t^{2}\right)$. This gives

$$
d u=7 \sec ^{2}\left(3 t^{2}\right) \cdot 6 t d t=42 t \sec ^{2}\left(3 t^{2}\right) d t
$$

So

$$
t \sec ^{2}\left(3 t^{2}\right) d t=\frac{d u}{42}
$$

We get

$$
\begin{aligned}
\int t \sec ^{2}\left(3 t^{2}\right) e^{7 \tan \left(3 t^{2}\right)} d t & =\int \frac{1}{42} e^{u} d u \\
& =\frac{1}{42} e^{u}+C \\
& =\frac{1}{42} e^{7 \tan \left(3 t^{2}\right)}+C .
\end{aligned}
$$

(e) $\int e^{x}\left(e^{x}-2\right)^{2 / 3} d x$

Solution. We use the substitution $u=e^{x}-2$, so that $d u=e^{x} d x$. This gives

$$
\begin{aligned}
\int e^{x}\left(e^{x}-2\right)^{2 / 3} d x & =\int u^{2 / 3} d u \\
& =\frac{3}{5} u^{5 / 3}+C \\
& =\frac{3}{5}\left(e^{x}-2\right)^{5 / 3}+C .
\end{aligned}
$$

(f) $\int e^{2 x}\left(e^{x}-2\right)^{2 / 3} d x$

Solution. We again use the substitution $u=e^{x}-2, d u=e^{x} d x$. But this time, we have an extraneous factor e^{x} since $e^{2 x}=e^{x} e^{x}$. We can express this extraneous factor in terms of u as $e^{x}=u+2$. Therefore

$$
\begin{aligned}
\int e^{2 x}\left(e^{x}-2\right)^{2 / 3} d x & =\int e^{x}\left(e^{x}-2\right)^{2 / 3} e^{x} d x \\
& =\int(u+2) u^{2 / 3} d u \\
& =\int\left(u^{5 / 3}+2 u^{2 / 3}\right) d u \\
& =\frac{3}{8} u^{8 / 3}+\frac{6}{5} u^{5 / 3}+C \\
& =\frac{3}{8}\left(e^{x}-2\right)^{8 / 3}+\frac{6}{5}\left(e^{x}-2\right)^{5 / 3}+C .
\end{aligned}
$$

(g) $\int_{e^{3}}^{e^{6}} \frac{d t}{t \ln (t)}$

Solution. We use the substitution $u=\ln (t)$, so that $d u=\frac{d t}{t}$. The bounds change as follows

$$
\begin{aligned}
& t=e^{3} \Rightarrow u=\ln \left(e^{3}\right)=3, \\
& t=e^{6} \Rightarrow u=\ln \left(e^{6}\right)=6 .
\end{aligned}
$$

The integral becomes

$$
\begin{aligned}
\int_{e^{3}}^{e^{6}} \frac{d t}{t \ln (t)} & =\int_{3}^{6} \frac{d u}{u} \\
& =[\ln |u|]_{3}^{6} \\
& =\ln (6)-\ln (3) \\
& =\ln \left(\frac{6}{3}\right) \\
& =\ln (2) .
\end{aligned}
$$

(h) $\int \frac{d x}{5 x+4 \sqrt{x}}$

Solution. We can first factor out a \sqrt{x} from the denominator, which gives

$$
\int \frac{d x}{5 x+4 \sqrt{x}}=\int \frac{d x}{\sqrt{x}(5 \sqrt{x}+4)} .
$$

We can then use the substitution $u=5 \sqrt{x}+4$, which gives $d u=\frac{5 d x}{2 \sqrt{x}}$. This gives $\frac{d x}{\sqrt{x}}=\frac{2 d u}{5}$, and the integral becomes

$$
\begin{aligned}
\int \frac{d x}{\sqrt{x}(5 \sqrt{x}+4)} & =\int \frac{2 d u}{5 u} \\
& =\frac{2}{5} \ln |u|+C \\
& =\frac{2}{5} \ln |5 \sqrt{x}+4|+C .
\end{aligned}
$$

(i) $\int \frac{d x}{\sqrt{2-x^{2}}}$

Solution. Recall the reference antiderivative

$$
\int \frac{d u}{\sqrt{1-u^{2}}}=\sin ^{-1}(u)+C .
$$

We can use this antiderivative after factoring out a 2 from the square root and letting $u=\frac{x}{\sqrt{2}}$. This
gives

$$
\begin{aligned}
\int \frac{d x}{\sqrt{2-x^{2}}} & =\int \frac{d x}{\sqrt{2\left(1-\frac{x^{2}}{2}\right)}} \\
& =\int \frac{d x}{\sqrt{2} \sqrt{1-\left(\frac{x}{\sqrt{2}}\right)^{2}}} \\
& =\int \frac{d u}{\sqrt{1-u^{2}}} \\
& =\sin ^{-1}(u)+C \\
& =\sin ^{-1}\left(\frac{x}{\sqrt{2}}\right)+C .
\end{aligned}
$$

(j) $\int_{0}^{1} \frac{x d x}{\sqrt{2-x^{2}}}$

Solution 1. This time, the numerator is (up to a constant factor) the derivative of the inside of the square root. Therefore, we can compute this integral with the substitution $u=2-x^{2}, d u=-2 x d x$. Thus we have $x d x=-\frac{d u}{2}$, and the bounds change to

$$
\begin{aligned}
& x=0 \Rightarrow u=2-0^{2}=2 \\
& x=1 \Rightarrow u=2-1^{2}=1
\end{aligned}
$$

We obtain

$$
\begin{aligned}
\int_{0}^{1} \frac{x d x}{\sqrt{2-x^{2}}} & =\int_{2}^{1}-\frac{d u}{2 \sqrt{u}} \\
& =[-\sqrt{u}]_{2}^{1} \\
& =1-\sqrt{2}
\end{aligned}
$$

Solution 2. We can be more ambitious with the substitution and let $u=\sqrt{2-x^{2}}$. The bounds change to

$$
\begin{array}{r}
x=0 \Rightarrow u=\sqrt{2-0^{2}}=\sqrt{2}, \\
x=1 \Rightarrow u=\sqrt{2-1^{2}}=1 .
\end{array}
$$

Differentiating gives $d u=-\frac{x d x}{\sqrt{2-x^{2}}}$, which is the entire integrand up to a negative sign. So the integral becomes

$$
\int_{0}^{1} \frac{x d x}{\sqrt{2-x^{2}}}=\int_{\sqrt{2}}^{1}-d u=\sqrt{2}-1 .
$$

(k) $\int_{0}^{2 / 3} \frac{d z}{4+9 z^{2}}$

Solution. This integral will make use of the reference antiderivative

$$
\int \frac{d u}{1+u^{2}}=\tan ^{-1}(u)+C
$$

To get to this form, we factor out a 4 from the denominator to obtain

$$
\int_{0}^{2 / 3} \frac{d z}{4+9 z^{2}}=\int_{0}^{2 / 3} \frac{d z}{4\left(1+\frac{9 z^{2}}{4}\right)}=\int_{0}^{2 / 3} \frac{d z}{4\left(1+\left(\frac{3 z}{2}\right)^{2}\right)}
$$

We can then use the substitution $u=\frac{3 z}{2}$, which gives $d u=\frac{3 d z}{2}$, so $d z=\frac{2 d u}{3}$. The bounds change to

$$
\begin{aligned}
& x=0 \Rightarrow u=0 \\
& x=\frac{2}{3} \Rightarrow u=1
\end{aligned}
$$

We obtain

$$
\begin{aligned}
\int_{0}^{2 / 3} \frac{d z}{4\left(1+\left(\frac{3 z}{2}\right)^{2}\right)} & =\int_{0}^{1} \frac{1}{4} \cdot \frac{2}{3} \cdot \frac{d u}{1+u^{2}} \\
& =\left[\frac{1}{6} \tan ^{-1}(u)\right]_{0}^{1} \\
& =\frac{1}{6}\left(\tan ^{-1}(1)-\tan ^{-1}(0)\right) \\
& =\frac{1}{6}\left(\frac{\pi}{4}-0\right) \\
& =\frac{\pi}{24}
\end{aligned}
$$

(l) $\int \frac{d x}{x^{2}+6 x+34}$

Solution. We will need to complete the square first to see a sum or difference of squares in the denominator:

$$
x^{2}+6 x+34=\left(x^{2}+6 x+9\right)-9+34=(x+3)^{2}+25
$$

Therefore the integral becomes

$$
\begin{aligned}
\int \frac{d x}{x^{2}+6 x+34} & =\int \frac{d x}{(x+3)^{2}+25} \\
& =\int \frac{d x}{25\left(\frac{(x+3)^{2}}{25}+1\right)} \\
& =\frac{1}{25} \int \frac{d x}{\left(\frac{x+3}{5}\right)^{2}+1} \\
& =\frac{1}{25} \int \frac{5 d u}{u^{2}+1} \quad\left(u=\frac{x+3}{2}, d x=5 d u\right) \\
& =\frac{1}{5} \tan ^{-1}(u)+C \\
& =\frac{1}{5} \tan ^{-1}\left(\frac{x+3}{5}\right)+C
\end{aligned}
$$

