Final Exam Practice Problems

1. (a) Find a function $f(x)$ and an interval $[a, b]$ so that the right endpoint Riemann sum of $f(x)$ on the interval $[a, b]$ is

$$
\sum_{k=1}^{n} \tan ^{3}\left(\frac{\pi k}{4 n}\right) \frac{\pi}{8 n}
$$

(b) Evaluate $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \tan ^{3}\left(\frac{\pi k}{4 n}\right) \frac{\pi}{8 n}$.
2. Consider the region \mathcal{R} bounded by the curve $y=e^{2-x}$, the line $x=5$ and the line $y=3$. The region \mathcal{R} is sketched below.

Set-up integrals computing the volume of the solid obtained by revolving \mathcal{R} about each axis given below using (i) the disk/washer method, and (ii) the shell method.
(a) x-axis
(b) y-axis
(c) $y=-1$
(d) $x=7$
(e) $y=3$
(f) $x=-4$
3. Evaluate the following integrals. If an integral diverges, explain why.
(a) $\int \frac{d x}{\left(7+6 x-x^{2}\right)^{3 / 2}}$
(c) $\int \cos ^{2}(5 \theta) \sin ^{2}(5 \theta) d \theta$
(e) $\int \sqrt{x} \cos (3 \sqrt{x}) d x$
(b) $\int_{0}^{\infty} x^{2} e^{-3 x} d x$
(d) $\int_{1}^{\sqrt{2}} \frac{d x}{\sqrt{4 x^{2}-2}}$
(f) $\int_{\pi / 4}^{3 \pi / 4} \tan (x) \sec ^{3}(x) d x$
4. Find the area inside the circle $x^{2}+y^{2}=3$ and outside the circle $x^{2}+y^{2}+2 y=0$. (Hint: use polar coordinates.)
5. Find the length of the polar curve $r=\theta^{4}, 0 \leqslant \theta \leqslant \sqrt{2}$.
6. Determine if the sequences below converge or diverge. If a sequence converges, find its limit.
(a) $a_{n}=n^{2}\left(1-\sec \left(\frac{5}{n}\right)\right)$
(b) $a_{n}=\frac{\ln \left(2^{n}+1\right)}{\ln (n)}$
7. Determine if the series below converge absolutely, converge conditionally or diverge. If a series converges, find its sum when possible.
(a) $\sum_{n=0}^{\infty} \frac{\cos (n)-5^{n}}{3^{2 n}}$
(b) $\sum_{n=1}^{\infty} \frac{3 \cdot 2^{2 n}}{5^{n+1}}$
(c) $\sum_{n=3}^{\infty} \frac{(-1)^{n}}{n \sqrt{\ln (n)^{2}+1}}$
(d) $\sum_{n=1}^{\infty} \frac{\sqrt{9 n^{2}+2}}{2 n^{4}}$
8. Find the radius and interval of convergence of the following power series.
(a) $\sum_{n=1}^{\infty} \frac{2^{n}(x+3)^{n}}{n}$
(b) $\sum_{n=0}^{\infty} \frac{n^{2} x^{n}}{5^{n^{2}}}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(x+5)^{3 n}}{\sqrt{64^{n} n+1}}$
9. Consider the curve with parametric equations $x=2 t, y=3 \ln (t)+2, \frac{3}{2} \leqslant t \leqslant 3$.
(a) Calculate the length of the curve.
(b) Calculate the area of the surface of revolution obtained by revolving the curve about the y-axis.
(c) Set-up (but do not evaluate) an integral that computes the area of the surface of revolution obtained by revolving the curve about the x-axis.
10. Consider the region \mathcal{R} in the $x y$-plane bounded by the lines $y=2 x, y=1$ and the graph $y=\sin \left(\frac{x}{2}\right)$.
(a) Sketch the region \mathcal{R}.
(b) Calculate the area of the region using (i) an x-integral, and (i) a y-integral.
(c) A solid is obtained by revolving the region \mathcal{R} about the line $y=2$. Set-up integrals that calculate the volume of the solid using (i) the disk/washer method, and (ii) the shell method. Then evaluate one of the integrals to find the volume of the solid.

