Rutgers University FA23 Math 152

Final Exam Practice Problems

1. (a) Find a function f(x) and an interval [a, b] so that the right endpoint Riemann sum of f(x) on the interval [a, b] is

$$\sum_{k=1}^{n} \tan^3\left(\frac{\pi k}{4n}\right) \frac{\pi}{8n}$$

- (b) Evaluate $\lim_{n \to \infty} \sum_{k=1}^{n} \tan^3 \left(\frac{\pi k}{4n}\right) \frac{\pi}{8n}$.
- 2. Consider the region \mathcal{R} bounded by the curve $y = e^{2-x}$, the line x = 5 and the line y = 3. The region \mathcal{R} is sketched below.

Set-up integrals computing the volume of the solid obtained by revolving \mathcal{R} about each axis given below using (i) the disk/washer method, and (ii) the shell method.

- (a) x-axis (b) y-axis (c) y = -1 (d) x = 7 (e) y = 3 (f) x = -4
- 3. Evaluate the following integrals. If an integral diverges, explain why.

(a)
$$\int \frac{dx}{(7+6x-x^2)^{3/2}}$$
 (c) $\int \cos^2(5\theta) \sin^2(5\theta) d\theta$ (e) $\int \sqrt{x} \cos(3\sqrt{x}) dx$
(b) $\int_0^\infty x^2 e^{-3x} dx$ (d) $\int_1^{\sqrt{2}} \frac{dx}{\sqrt{4x^2-2}}$ (f) $\int_{\pi/4}^{3\pi/4} \tan(x) \sec^3(x) dx$

- 4. Find the area inside the circle $x^2 + y^2 = 3$ and outside the circle $x^2 + y^2 + 2y = 0$. (*Hint: use polar coordinates.*)
- 5. Find the length of the polar curve $r = \theta^4$, $0 \leq \theta \leq \sqrt{2}$.

6. Determine if the sequences below converge or diverge. If a sequence converges, find its limit.

(a)
$$a_n = n^2 \left(1 - \sec\left(\frac{5}{n}\right) \right)$$
 (b) $a_n = \frac{\ln(2^n + 1)}{\ln(n)}$

7. Determine if the series below converge absolutely, converge conditionally or diverge. If a series converges, find its sum when possible.

(a)
$$\sum_{n=0}^{\infty} \frac{\cos(n) - 5^n}{3^{2n}}$$
 (b) $\sum_{n=1}^{\infty} \frac{3 \cdot 2^{2n}}{5^{n+1}}$ (c) $\sum_{n=3}^{\infty} \frac{(-1)^n}{n\sqrt{\ln(n)^2 + 1}}$ (d) $\sum_{n=1}^{\infty} \frac{\sqrt{9n^2 + 2}}{2n^4}$

8. Find the radius and interval of convergence of the following power series.

(a)
$$\sum_{n=1}^{\infty} \frac{2^n (x+3)^n}{n}$$
 (b) $\sum_{n=0}^{\infty} \frac{n^2 x^n}{5^{n^2}}$ (c) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} (x+5)^{3n}}{\sqrt{64^n n+1}}$

9. Consider the curve with parametric equations $x = 2t, y = 3\ln(t) + 2, \frac{3}{2} \le t \le 3$.

- (a) Calculate the length of the curve.
- (b) Calculate the area of the surface of revolution obtained by revolving the curve about the y-axis.
- (c) Set-up (but do not evaluate) an integral that computes the area of the surface of revolution obtained by revolving the curve about the *x*-axis.

10. Consider the region \mathcal{R} in the *xy*-plane bounded by the lines y = 2x, y = 1 and the graph $y = \sin\left(\frac{x}{2}\right)$.

- (a) Sketch the region \mathcal{R} .
- (b) Calculate the area of the region using (i) an x-integral, and (i) a y-integral.
- (c) A solid is obtained by revolving the region \mathcal{R} about the line y = 2. Set-up integrals that calculate the volume of the solid using (i) the disk/washer method, and (ii) the shell method. Then evaluate one of the integrals to find the volume of the solid.