Final Exam Practice Problems Solutions

1. (a) Find a function $f(x)$ and an interval $[a, b]$ so that the right endpoint Riemann sum of $f(x)$ on the interval $[a, b]$ is

$$
\sum_{k=1}^{n} \tan ^{3}\left(\frac{\pi k}{4 n}\right) \frac{\pi}{8 n}
$$

Solution. The function $f(x)=\tan ^{3}(2 x)$ on the interval $\left[0, \frac{\pi}{8}\right]$ gives a possible solution.
(b) Evaluate $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \tan ^{3}\left(\frac{\pi k}{4 n}\right) \frac{\pi}{8 n}$.

Solution.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \tan ^{3}\left(\frac{\pi k}{4 n}\right) \frac{\pi}{8 n} & =\int_{0}^{\pi / 8} \tan ^{3}(2 x) d x \\
& =\int_{0}^{\pi / 8} \tan (2 x) \tan ^{2}(2 x) d x \\
& =\int_{0}^{\pi / 8} \tan (2 x)\left(\sec ^{2}(2 x)-1\right) d x \\
& =\int_{0}^{\pi / 8} \tan (2 x) \sec ^{2}(2 x) d x-\int_{0}^{\pi / 8} \tan (2 x) d x \\
& =\int_{0}^{1} \frac{u}{2} d u-\left[\frac{\ln |\sec (2 x)|}{2}\right]_{0}^{\pi / 8} \quad(u=\tan (2 x)) \\
& =\left[\frac{u^{2}}{4}\right]_{0}^{1}-\frac{\ln (\sqrt{2})}{2} \\
& =\frac{1-\ln (2)}{4}
\end{aligned}
$$

2. Consider the region \mathcal{R} bounded by the curve $y=e^{2-x}$, the line $x=5$ and the line $y=3$. The region \mathcal{R} is sketched below.

Set-up integrals computing the volume of the solid obtained by revolving \mathcal{R} about each axis given below using (i) the disk/washer method, and (ii) the shell method.
(a) x-axis

Solution. (i) $V=\int_{2-\ln (3)}^{5} \pi\left(3^{2}-\left(e^{2-x}\right)^{2}\right) d x$, (ii) $V=\int_{e^{-3}}^{3} 2 \pi y(5-(2-\ln (y))) d y$.
(b) y-axis

Solution. (i) $V=\int_{e^{-3}}^{3} \pi\left(5^{2}-(2-\ln (y))^{2}\right) d y$, (ii) $V=\int_{2-\ln (3)}^{5} 2 \pi x\left(3-e^{2-x}\right) d x$.
(c) $y=-1$

Solution. (i) $V=\int_{2-\ln (3)}^{5} \pi\left((3+1)^{2}-\left(e^{2-x}+1\right)^{2}\right) d x$, (ii) $V=\int_{e^{-3}}^{3} 2 \pi(y+1)(5-(2-\ln (y))) d y$.
(d) $x=7$

Solution. (i) $V=\int_{e^{-3}}^{3} \pi\left((7-(2-\ln (y)))^{2}-(7-5)^{2}\right) d y$, (ii) $V=\int_{2-\ln (3)}^{5} 2 \pi(7-x)\left(3-e^{2-x}\right) d x$.
(e) $y=3$

Solution. (i) $V=\int_{2-\ln (3)}^{5} \pi\left(3-e^{2-x}\right)^{2} d x$, (ii) $V=\int_{e^{-3}}^{3} 2 \pi(3-y)(5-(2-\ln (y))) d y$.
(f) $x=-4$

Solution. (i) $V=\int_{e^{-3}}^{3} \pi\left((5+4)^{2}-(2-\ln (y)+4)^{2}\right) d y$, (ii) $V=\int_{2-\ln (3)}^{5} 2 \pi(x+4)\left(3-e^{2-x}\right) d x$.
3. Evaluate the following integrals. If an integral diverges, explain why.
(a) $\int \frac{d x}{\left(7+6 x-x^{2}\right)^{3 / 2}}$

Solution. We complete the square and then use a trigonometric substitution. We have

$$
7+6 x-x^{2}=7-\left(x^{2}-6 x\right)=7-\left((x-3)^{2}-9\right)=16-(x-3)^{2}
$$

For the trigonometric substitution, we want $16-(x-3)^{2}=16-16 \sin (\theta)^{2}$, so we will set $x-3=$ $4 \sin (\theta)$. This gives $d x=4 \cos (\theta) d \theta$ and the following right triangle where $\sin (\theta)=\frac{x-3}{4}$:

Therefore

$$
\begin{aligned}
\int \frac{d x}{\left(7+6 x-x^{2}\right)^{3 / 2}} & =\int \frac{d x}{\left(16-(x-3)^{2}\right)^{3 / 2}} \\
& =\int \frac{4 \cos (\theta) d \theta}{\left(16-16 \sin (\theta)^{2}\right)^{3 / 2}} \\
& =\int \frac{4 \cos (\theta) d \theta}{\left(16 \cos (\theta)^{2}\right)^{3 / 2}} \\
& =\frac{1}{16} \int \frac{d \theta}{\cos (\theta)^{2}} \\
& =\frac{1}{16} \int \sec (\theta)^{2} d \theta \\
& =\frac{1}{16} \tan (\theta)+C \\
& =\frac{x-3}{16 \sqrt{16-(x-3)^{2}}}+C
\end{aligned}
$$

(b) $\int_{0}^{\infty} x^{2} e^{-3 x} d x$

Solution. We start by computing an antiderivative of the integrand using integration by parts twice. For the first IBP, we will use

$$
\begin{aligned}
& u=x^{2} \Rightarrow d u=2 x d x \\
& d v=e^{-3 x} \Rightarrow v=-\frac{1}{3} e^{3 x}
\end{aligned}
$$

We get

$$
\int x^{2} e^{-3 x}=-\frac{x^{2} e^{-3 x}}{3}+\frac{2}{3} \int x e^{-3 x} d x
$$

The second IBP uses

$$
u=x \Rightarrow d u=x d x
$$

$$
d v=e^{-3 x} \Rightarrow v=-\frac{1}{3} e^{3 x}
$$

We get

$$
\begin{aligned}
\int x^{2} e^{-3 x} & =-\frac{x^{2} e^{-3 x}}{3}-\frac{2 x e^{-3 x}}{9}+\frac{2}{9} \int e^{-3 x} d x \\
& =-\frac{x^{2} e^{-3 x}}{3}-\frac{2 x e^{-3 x}}{9}-\frac{2 e^{-3 x}}{27}+C \\
& =-\frac{9 x^{2}+6 x+2}{27 e^{3 x}}+C
\end{aligned}
$$

We can now evaluate the improper integral.

$$
\begin{align*}
\int_{0}^{\infty} x^{2} e^{-3 x} d x & =\lim _{b \rightarrow \infty} \int_{0}^{b} x^{2} e^{-3 x} d x \\
& =\lim _{b \rightarrow \infty}\left[-\frac{9 x^{2}+6 x+2}{27 e^{3 x}}\right]_{0}^{b} \\
& =\lim _{b \rightarrow \infty}\left(-\frac{9 b^{2}+6 b+2}{27 e^{3 b}}+\frac{2}{27}\right) \\
& =\frac{2}{27}-\lim _{b \rightarrow \infty} \frac{18 b+6}{81 e^{3 b}} \quad\left(\text { L'H }^{\prime} \mathrm{H}\right) \\
& =\frac{2}{27}-\lim _{b \rightarrow \infty} \frac{18}{243 e^{3 b}} \quad\left(\mathrm{~L}^{\prime} \mathrm{H}\right) \tag{L'H}\\
& =\frac{2}{27}
\end{align*}
$$

(c) $\int \cos ^{2}(5 \theta) \sin ^{2}(5 \theta) d \theta$

Solution. Trigonometric integrals with powers of sin and cos both even can be dealt with using the double-angle identities. We get

$$
\begin{aligned}
\int \cos ^{2}(5 \theta) \sin ^{2}(5 \theta) d \theta & =\int \frac{1+\cos (10 \theta)}{2} \frac{1-\cos (10 \theta)}{2} d \theta \\
& =\frac{1}{4} \int\left(1-\cos ^{2}(10 \theta)\right) d \theta \\
& =\frac{1}{4} \int\left(1-\frac{1+\cos (20 \theta)}{2}\right) d \theta \\
& =\frac{1}{8} \int(1-\cos (20 \theta)) d \theta \\
& =\frac{1}{8}\left(\theta-\frac{\sin (20 \theta)}{20}\right)+C
\end{aligned}
$$

(d) $\int_{1}^{\sqrt{2}} \frac{d x}{\sqrt{4 x^{2}-2}}$

Solution. We use a trigonometric substitution. We want $4 x^{2}-2=2 \sec (\theta)^{2}-2$, so we take $x=\frac{\sqrt{2}}{2} \sec (\theta)$, so that $d x=\frac{\sqrt{2}}{2} \sec (\theta) \tan (\theta) d \theta$. When $x=1$, we have $\sec (\theta)=\sqrt{2}$, so $\theta=\frac{\pi}{4}$, When $x=\sqrt{2}$, we have $\sec (\theta)=2$, so $\theta=\frac{\pi}{3}$. Therefore, the integral becomes

$$
\begin{aligned}
\int_{1}^{\sqrt{2}} \frac{d x}{\sqrt{4 x^{2}-2}} & =\int_{\pi / 4}^{\pi / 3} \frac{\frac{\sqrt{2}}{2} \sec (\theta) \tan (\theta)}{\sqrt{2 \sec (\theta)^{2}-2}} d \theta \\
& =\int_{\pi / 4}^{\pi / 3} \frac{\frac{\sqrt{2}}{2} \sec (\theta) \tan (\theta)}{\sqrt{2} \tan (\theta)} d \theta \\
& =\frac{1}{2} \int_{\pi / 4}^{\pi / 3} \sec (\theta) d \theta \\
& =\frac{1}{2}[\ln |\sec (\theta)+\tan (\theta)|]_{\pi / 4}^{\pi / 3} \\
& =\frac{1}{2}(\ln (2+\sqrt{3})-\ln (1+\sqrt{2})) .
\end{aligned}
$$

(e) $\int \sqrt{x} \cos (3 \sqrt{x}) d x$

Solution. We start with the substitution $w=3 \sqrt{x}$, which gives $d w=\frac{3 d x}{2 \sqrt{x}}$, so $d x=\frac{2 w d w}{3}$. Hence

$$
\int \sqrt{x} \cos (3 \sqrt{x}) d x=\int \frac{w}{3} \cos (w) \frac{2 w d w}{3}=\frac{2}{9} \int w^{2} \cos (w) d w
$$

We now use two successive IBPs. In the first one, we pick $u=w^{2}$ and $v=\cos (w)$, so $d u=2 w d w$ and $v=\sin (w)$, and

$$
\int w^{2} \cos (w) d w=w^{2} \sin (w)-\int 2 w \sin (w) d w
$$

In the second IBP, we pick $u=2 w$ and $d v=\sin (w)$, so that $d u=2 d w$ and $v=-\cos (w)$. We obtain

$$
\begin{aligned}
\int w^{2} \cos (w) d w & =w^{2} \sin (w)-\int 2 w \sin (w) d w \\
& =w^{2} \sin (w)-\left(2 w(-\cos (w))-\int 2(-\cos (w)) d w\right) \\
& =w^{2} \sin (w)+2 w \cos (w)-2 \int \cos (w) d w \\
& =w^{2} \sin (w)+2 w \cos (w)-2 \sin (w)+C
\end{aligned}
$$

Going back to the x-integral, we obtain

$$
\begin{aligned}
\int \sqrt{x} \cos (3 \sqrt{x}) d x & =\frac{2}{9} \int w^{2} \cos (w) d w \\
& =\frac{2}{9}\left(w^{2} \sin (w)+2 w \cos (w)-2 \sin (w)\right)+C \\
& =\frac{2}{9}\left((3 \sqrt{x})^{2} \sin (3 \sqrt{x})+2(3 \sqrt{x}) \cos (3 \sqrt{x})-2 \sin (3 \sqrt{x})\right)+C \\
& =\frac{2}{9}(9 x \sin (3 \sqrt{x})+6 \sqrt{x} \cos (3 \sqrt{x})-2 \sin (3 \sqrt{x}))+C
\end{aligned}
$$

(f) $\int_{\pi / 4}^{3 \pi / 4} \tan (x) \sec ^{3}(x) d x$

Solution. Let us start by finding the antiderivative using the substitution $u=\sec (x)$, $d u=$ $\sec (x) \tan (x) d x$. We get

$$
\int \tan (x) \sec ^{3}(x) d x=\int u^{2} d u=\frac{u^{3}}{3}+C=\frac{\sec ^{3}(x)}{3}+C .
$$

For the definite integral, observe that it is a type II improper integral because of the vertical asymptote of the integrand at $x=\frac{\pi}{2}$. We will need to compute this integral by splitting it up as

$$
\int_{\pi / 4}^{3 \pi / 4} \tan (x) \sec ^{3}(x) d x=\int_{\pi / 4}^{\pi / 2} \tan (x) \sec ^{3}(x) d x+\int_{\pi / 2}^{3 \pi / 4} \tan (x) \sec ^{3}(x) d x
$$

and setting each summand as a limit. For the first summand, we have

$$
\begin{aligned}
\int_{\pi / 4}^{\pi / 2} \tan (x) \sec ^{3}(x) d x & =\lim _{b \rightarrow \frac{\pi}{2}-} \int_{\pi / 4}^{b} \tan (x) \sec ^{3}(x) d x \\
& =\lim _{b \rightarrow \frac{\pi}{2}-}\left[\frac{\sec ^{3}(x)}{3}\right]_{\pi / 4}^{b} \\
& =\lim _{b \rightarrow \frac{\pi}{2}-}\left(\frac{\sec ^{3}(b)}{3}-\frac{(\sqrt{2})^{3}}{3}\right) \\
& =\infty
\end{aligned}
$$

There is no need to go any further. We have found that $\int_{\pi / 4}^{3 \pi / 4} \tan (x) \sec ^{3}(x) d x$ diverges
4. Find the area inside the circle $x^{2}+y^{2}=3$ and outside the circle $x^{2}+y^{2}+2 y=0$. (Hint: use polar coordinates.)

Solution. We start by sketching the circles and converting their equations to polar. The first equation $x^{2}+y^{2}=3$ gives $r^{2}=3$, so $r=\sqrt{3}$ is the polar equation. The second equation $x^{2}+y^{2}+2 y=0$ becomes $r^{2}+2 r \sin (\theta)=0$, so we get $r=0$ or $r=-2 \sin (\theta)$. Since the origin is already on the graph of $r=-2 \sin (\theta)$, we can discard $r=0$ and keep $r=-2 \sin (\theta)$.

To find the values of θ where the circles intersect, we equate the polar equations and solve for $0 \leqslant \theta \leqslant 2 \pi$:

$$
-2 \sin (\theta)=\sqrt{3} \Rightarrow \sin (\theta)=-\frac{\sqrt{3}}{2} \Rightarrow \theta=\frac{4 \pi}{3}, \frac{5 \pi}{3}
$$

We can also exploit the symmetry with respect to the y-axis and compute the area of the region in the first and fourth quadrants, and double it. Therefore, the area will be computed by

$$
\begin{aligned}
A & =2\left(\int_{-\pi / 3}^{0} \frac{1}{2}\left(\sqrt{3}^{2}-(-2 \sin (\theta))^{2}\right) d \theta+\int_{0}^{\pi / 2} \frac{1}{2} \sqrt{3}^{2} d \theta\right) \\
& =\int_{-\pi / 3}^{0}\left(3-4 \sin (\theta)^{2}\right) d \theta+\int_{0}^{\pi / 2} 3 d \theta \\
& =\int_{-\pi / 3}^{0}\left(3-4 \frac{1-\cos (2 \theta)}{2}\right) d \theta+\frac{3 \pi}{2} \\
& =\int_{-\pi / 3}^{0}(1+2 \cos (2 \theta)) d \theta+\frac{3 \pi}{2} \\
& =[\theta+\sin (2 \theta)]_{-\pi / 3}^{0}+\frac{3 \pi}{2} \\
& =-\left(-\frac{\pi}{3}+\sin \left(-\frac{2 \pi}{3}\right)\right)+\frac{3 \pi}{2} \\
& =\frac{11 \pi}{6}+\frac{\sqrt{3}}{2}
\end{aligned}
$$

5. Find the length of the polar curve $r=\theta^{4}, 0 \leqslant \theta \leqslant \sqrt{2}$.

Solution. The length is given by

$$
L=\int_{0}^{\sqrt{2}} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{0}^{\sqrt{2}} \sqrt{\theta^{8}+\left(4 \theta^{3}\right)^{2}} d \theta=\int_{0}^{\sqrt{2}} \theta^{3} \sqrt{\theta^{2}+16} d \theta
$$

This integral can be calculated with the substitution $u=\theta^{2}+16$, which gives $d u=2 \theta d \theta$. The extraneous factor θ^{2} in the integrand can be replaced by $u-16$. The integral becomes

$$
\begin{aligned}
L & =\int_{16}^{18} \frac{1}{2}(u-16) \sqrt{u} d u \\
& =\frac{1}{2} \int_{16}^{18}\left(u^{3 / 2}-16 u^{1 / 2}\right) d u \\
& =\frac{1}{2}\left[\frac{2}{5} u^{5 / 2}-\frac{32}{3} u^{3 / 2}\right]_{16}^{18} \\
& =\frac{1}{2}\left(\frac{2}{5}\left(18^{5 / 2}-16^{5 / 2}\right)-\frac{32}{3}\left(18^{3 / 2}-16^{3 / 2}\right)\right) .
\end{aligned}
$$

6. Determine if the sequences below converge absolutely, converge conditionally or diverge. If a sequence converges, find its limit.
(a) $a_{n}=n^{2}\left(1-\sec \left(\frac{5}{n}\right)\right)$

Solution. This is an indeterminate form $\infty \cdot 0$. We can calculate the limit by writing the expression as a $\frac{0}{0}$ quotient and using L'Hopital's Rule. This gives

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n^{2}\left(1-\sec \left(\frac{5}{n}\right)\right) & =\lim _{x \rightarrow \infty} \frac{1-\sec \left(\frac{5}{x}\right)}{\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{5}{x^{2}} \sec \left(\frac{5}{x}\right) \tan \left(\frac{5}{x}\right)}{-\frac{2}{x^{3}}} \\
& =\lim _{x \rightarrow \infty}-\frac{5}{2} \sec \left(\frac{5}{x}\right) \frac{\tan \left(\frac{5}{x}\right)}{\frac{1}{x}} \quad\left(\mathrm{~L}^{\prime} \mathrm{H}\right) \\
& =\left(\lim _{x \rightarrow \infty}-\frac{5}{2} \sec \left(\frac{5}{x}\right)\right)\left(\lim _{x \rightarrow \infty} \frac{\tan \left(\frac{5}{x}\right)}{\frac{1}{x}}\right) \\
& =-\frac{5}{2} \lim _{x \rightarrow \infty} \frac{-\frac{5}{x^{2}} \sec ^{2}\left(\frac{5}{x}\right)}{-\frac{1}{x^{2}}} \quad\left(\mathrm{~L}^{\prime} \mathrm{H}\right) \\
& =-\frac{5}{2} \lim _{x \rightarrow \infty} 5 \sec ^{2}\left(\frac{5}{x}\right) \\
& =-\frac{25}{2} .
\end{aligned}
$$

(b) $a_{n}=\frac{\ln \left(2^{n}+1\right)}{\ln (n)}$

Solution. This is an indeterminate form $\frac{\infty}{\infty}$, so we can use L'Hopital's Rule. We have

$$
\begin{align*}
\lim _{x \rightarrow \infty} \frac{\ln \left(2^{x}+1\right)}{\ln (x)} & =\lim _{x \rightarrow \infty} \frac{\frac{\ln (2) 2^{x}}{2^{x}+1}}{\frac{1}{x}} \tag{L’H}\\
& =\lim _{x \rightarrow \infty} \frac{\ln (2) x}{1+\frac{1}{2^{x}}}
\end{align*}
$$

Therefore, the sequence diverges.
7. Determine if the series below converge or diverge. If a series converges, find its sum when possible.
(a) $\sum_{n=0}^{\infty} \frac{\cos (n)-5^{n}}{3^{2 n}}$

Solution. Observe that

$$
\frac{\cos (n)-5^{n}}{3^{2 n}}=\frac{\cos (n)}{9^{n}}-\left(\frac{5}{9}\right)^{n}
$$

Since $0 \leqslant\left|\frac{\cos (n)}{9^{n}}\right| \leqslant \frac{1}{9^{n}}$ and $\sum_{n=0}^{\infty} \frac{1}{9^{n}}$ converges as a geometric series with $|r|=\frac{1}{9}<1$, we deduce that $\sum_{n=0}^{\infty} \frac{\cos (n)}{9^{n}}$ converges absolutely by the DCT. Also, $\sum_{n=0}^{\infty}\left(\frac{5}{9}\right)^{n}$ converges absolutely as a geometric series with $|r|=\frac{5}{9}<1$. Therefore, we have

$$
\sum_{n=0}^{\infty} \frac{\cos (n)-5^{n}}{3^{2 n}}=\sum_{n=0}^{\infty} \frac{\cos (n)}{9^{n}}-\sum_{n=0}^{\infty}\left(\frac{5}{9}\right)^{n}
$$

and $\sum_{n=0}^{\infty} \frac{\cos (n)-5^{n}}{3^{2 n}}$ converges absolutely.
(b) $\sum_{n=1}^{\infty} \frac{3 \cdot 2^{2 n}}{5^{n+1}}$

Solution. The series can be written as

$$
\sum_{n=1}^{\infty} \frac{3 \cdot 2^{2 n}}{5^{n+1}}=\sum_{n=1}^{\infty} \frac{3}{5}\left(\frac{4}{5}\right)^{n}
$$

so it is geometric. Since the common ratio $r=\frac{4}{5}$ satisfies $|r|<1$, the series converges absolutely and its sum is

$$
\sum_{n=1}^{\infty} \frac{3 \cdot 2^{2 n}}{5^{n+1}}=\frac{\frac{12}{25}}{1-\frac{4}{5}}=\frac{12}{5}
$$

(c) $\sum_{n=3}^{\infty} \frac{(-1)^{n}}{n \sqrt{\ln (n)^{2}+1}}$

Solution. We start by using the AST with $a_{n}=\frac{1}{n \sqrt{\ln (n)^{2}+1}}$, which is positive, decreasing and converges to 0 as the reciprocal of an increasing positive sequence going to infinity. Therefore, the series converges.

We now need to determine if the convergence is absolute or conditional by inspecting the series

$$
\sum_{n=3}^{\infty}\left|\frac{(-1)^{n}}{n \sqrt{\ln (n)^{2}+1}}\right|=\sum_{n=3}^{\infty} \frac{1}{n \sqrt{\ln (n)^{2}+1}}
$$

For this series, we use the Integral Test. The function $f(x)=\frac{1}{x \sqrt{\ln (x)^{2}+1}}$ is continuous and positive on $[3, \infty)$. It is also decreasing as the reciprocal of a positive increasing function. Therefore, the Integral Test applies and we can test for the convergence of the series by calculating the improper integral $\int_{3}^{\infty} \frac{d x}{x \sqrt{\ln (x)^{2}+1}}$.

Before we calculate the improper integral, let us start by finding an antiderivative. We first use the substitution $u=\ln (x), d u=\frac{d x}{x}$ to get

$$
\int \frac{d x}{x \sqrt{\ln (x)^{2}+1}}=\int \frac{d u}{\sqrt{u^{2}+1}}
$$

This integral can be calculated with the substitution $u=\tan (\theta)$, which gives $d u=\sec ^{2}(\theta) d \theta$ and $\sqrt{u^{2}+1}=\sqrt{\tan ^{2}(\theta)+1}=\sec (\theta)$. The right triangle for this substitution has base angle θ so that $\tan (\theta)=u$, as shown below.

1

The integral becomes

$$
\begin{aligned}
\int \frac{d x}{x \sqrt{\ln (x)^{2}+1}} & =\int \frac{d u}{\sqrt{u^{2}+1}} \\
& =\int \frac{\sec ^{2}(\theta) d \theta}{\sec (\theta)} \\
& =\int \sec (\theta) d \theta \\
& =\ln |\sec (\theta)+\tan (\theta)|+C \\
& =\ln \left|\sqrt{u^{2}+1}+u\right|+C \\
& =\ln \left|\sqrt{\ln (x)^{2}+1}+\ln (x)\right|+C
\end{aligned}
$$

Now for the improper integral, we get

$$
\begin{aligned}
\int_{3}^{\infty} \frac{d x}{x \sqrt{\ln (x)^{2}+1}} & =\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{d x}{x \sqrt{\ln (x)^{2}+1}} \\
& =\lim _{b \rightarrow \infty}\left[\ln \left|\sqrt{\ln (x)^{2}+1}+\ln (x)\right|\right]_{3}^{\infty} \\
& =\lim _{b \rightarrow \infty}\left(\ln \left|\sqrt{\ln (b)^{2}+1}+\ln (b)\right|-\ln \left|\sqrt{\ln (3)^{2}+1}+\ln (3)\right|\right) \\
& =\infty
\end{aligned}
$$

So $\int_{3}^{\infty} \frac{d x}{x \sqrt{\ln (x)^{2}+1}}$ diverges, and thus $\sum_{n=3}^{\infty} \frac{(-1)^{n}}{n \sqrt{\ln (n)^{2}+1}}$ does not converge absolutely.
In conclusion, $\sum_{n=3}^{\infty} \frac{(-1)^{n}}{n \sqrt{\ln (n)^{2}+1}}$ converges conditionally .
(d) $\sum_{n=1}^{\infty} \frac{\sqrt{9 n^{2}+2}}{2 n^{4}}$

Solution. We use the LCT with the reference series $\sum_{n=1}^{\infty} \frac{\sqrt{n^{2}}}{n^{4}}=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$, which converges as a p-series with $p=3>1$. The limit for the LCT is

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{\sqrt{9 n^{2}+2}}{2 n^{4}}}{\frac{\sqrt{n^{2}}}{n^{4}}} \\
& =\lim _{n \rightarrow \infty} \frac{\sqrt{9+\frac{2}{n^{2}}}}{2} \\
& =\frac{3}{2} .
\end{aligned}
$$

Since $0<L<\infty$, both series have the same behavior, so $\sum_{n=1}^{\infty} \frac{\sqrt{9 n^{2}+2}}{2 n^{4}}$ converges absolutely.
8. Find the radius and interval of convergence of the following power series.
(a) $\sum_{n=1}^{\infty} \frac{2^{n}(x+3)^{n}}{n}$

Solution. We start by using the Root Test. We have

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{2^{n}(x+3)^{n}}{n}\right|^{1 / n}=\lim _{n \rightarrow \infty} \frac{2|x+3|}{n^{1 / n}}=2|x+3| .
$$

The series converges absolutely when $2|x+3|<1$, which gives $-\frac{7}{2}<x<-\frac{5}{2}$. We now need to test both endpoints.

- At $x=-\frac{7}{2}$, we have

$$
\sum_{n=1}^{\infty} \frac{2^{n}\left(-\frac{7}{2}+3\right)^{n}}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

This series converges by the AST since $a_{n}=\frac{1}{n}$ is positive, decreasing and converges to 0 .

- At $x=-\frac{5}{2}$, we have

$$
\sum_{n=1}^{\infty} \frac{2^{n}\left(-\frac{5}{2}+3\right)^{n}}{n}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

This series diverges as a p-series with $p=1$.

In conclusion, we have $R=\frac{1}{2}$ and $\mathrm{IOC}=\left[-\frac{7}{2},-\frac{5}{2}\right)$.
(b) $\sum_{n=0}^{\infty} \frac{n^{2} x^{n}}{5^{n^{2}}}$

Solution. We start by using the Root Test. We have

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{n^{2} x^{n}}{5^{n^{2}}}\right|=\lim _{n \rightarrow \infty} \frac{n^{2 / n}|x|}{5^{n}}=0
$$

Therefore, the series converges absolutely for any value of x. So $R=\infty$ and $\operatorname{IOC}=(-\infty, \infty)$.
(c) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(x+5)^{3 n}}{\sqrt{64^{n} n+1}}$

Solution. We use the Root Test. We have

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty} \sqrt[n]{\left|\frac{(-1)^{n+1}(x+5)^{3 n}}{\sqrt{64^{n} n+1}}\right|} \\
& =\lim _{n \rightarrow \infty} \frac{|x+5|^{3}}{\left(64^{n} n+1\right)^{1 / 2 n}} \\
& =\lim _{n \rightarrow \infty} \frac{|x+5|^{3}}{8 n^{1 / 2 n}\left(1+\frac{1}{64^{n} n}\right)^{2 / n}} \\
& =\frac{|x+5|^{3}}{8}
\end{aligned}
$$

since

$$
\lim _{n \rightarrow \infty} n^{1 / 2 n}=e^{\lim _{n \rightarrow \infty} \frac{\ln (n)}{2 n}}=e^{\lim _{n \rightarrow \infty} \frac{1 / n}{2}}=e^{0}=1
$$

So the series converges absolutely when $\frac{|x+5|^{3}}{8}<1$, that is $-2<x+5<2$, so $-7<x<-3$. When $x>-3$ or $x<-7$, the series diverges. We now need to test the endpoints $x=-3,-7$.

When $x=-3$, we have

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(-3+5)^{3 n}}{\sqrt{64^{n} n+1}}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1} 8^{n}}{\sqrt{64^{n} n+1}}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+64^{-n}}}
$$

Let us check the assumptions of the AST for this series. The sequence $a_{n}=\frac{1}{\sqrt{n+64^{-n}}}$ is positive. We can see that a_{n} is decreasing by observing that the function $f(x)=x+64^{-x}$ has a positive derivative on $[1, \infty)$:

$$
f^{\prime}(x)=1-\ln (64) 64^{-x}=\frac{64^{x}-\ln (64)}{64^{x}}>0 \text { when } x \geqslant 1
$$

Also, $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n+64^{-n}}}=0$. Therefore, the AST applies and the series converges.

When $x=-7$, we have

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(-7+5)^{3 n}}{\sqrt{64^{n} n+1}}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(-1)^{3 n} 8^{n}}{\sqrt{64^{n} n+1}}=-\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+64^{-n}}}
$$

We can use the LCT for this series with $b_{n}=\frac{1}{\sqrt{n}}$. We have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{1}{\sqrt{n+64^{-n}}}}{\frac{1}{\sqrt{n}}} & =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+64^{-n} n^{-1 / 2}}} \\
& =\frac{1}{\sqrt{1+0}} \\
& =1
\end{aligned}
$$

Furthermore, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges as a p-series with $p=\frac{1}{2} \leqslant 1$. Therefore, the series $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+64^{-n}}}$ diverges.

Conclusion: the radius of convergence is $R=2$ and the interval of convergence is $(-7,-3]$.
9. Consider the curve with parametric equations $x=2 t, y=3 \ln (t)+2, \frac{3}{2} \leqslant t \leqslant 3$.
(a) Calculate the length of the curve.

Solution.

$$
\begin{aligned}
L & =\int_{3 / 2}^{3} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{3 / 2}^{3} \sqrt{(2)^{2}+\left(\frac{3}{t}\right)^{2}} d t \\
& =\int_{3 / 2}^{3} \sqrt{4+\frac{9}{t^{2}}} d t \\
& =\int_{3 / 2}^{3} \frac{\sqrt{4 t^{2}+9}}{t} d t
\end{aligned}
$$

We will compute this integral with a trigonometric substitution. We want $4 t^{2}+9=9 \tan ^{2}(\theta)+9=$ $9 \sec ^{2}(\theta)$, so we choose $t=\frac{3 \tan (\theta)}{2}$. Then we have $d t=\frac{3 \sec ^{2}(\theta) d \theta}{2}$. When $t=3 / 2$, we have $\tan (\theta)=1$ so $\theta=\pi / 4$. When $t=3$, we have $\tan (\theta)=2$ so $\theta=\tan ^{-1}(2)$. It follows that

$$
\begin{aligned}
L & =\int_{\pi / 4}^{\tan ^{-1}(2)} \frac{\sqrt{9 \sec ^{2}(\theta)}}{\frac{3 \tan (\theta)}{2}} \frac{3}{2} \sec ^{2}(\theta) d \theta \\
& =3 \int_{\pi / 4}^{\tan ^{-1}(2)} \frac{\sec (\theta)^{3}}{\tan (\theta)} d \theta \\
& =3 \int_{\pi / 4}^{\tan ^{-1}(2)} \frac{\sec (\theta)}{\tan (\theta)}\left(\tan (\theta)^{2}+1\right) d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =3 \int_{\pi / 4}^{\tan ^{-1}(2)}(\sec (\theta) \tan (\theta)+\csc (\theta)) d \theta \\
& =3[\sec (\theta)+\ln |\csc (\theta)-\cot (\theta)|]_{\pi / 4}^{\tan }{ }^{-1}(2) \\
& =3\left(\sqrt{5}-\sqrt{2}+\ln \left(\frac{\sqrt{5}-1}{2(\sqrt{2}-1)}\right)\right)
\end{aligned}
$$

(b) Calculate the area of the surface of revolution obtained by revolving the curve about the y-axis.

Solution. We have

$$
\begin{aligned}
A & =\int_{3 / 2}^{3} 2 \pi x(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =2 \pi \int_{3 / 2}^{3} 2 t \frac{\sqrt{4 t^{2}+9}}{t} d t \\
& =4 \pi \int_{3 / 2}^{3} \sqrt{4 t^{2}+9} d t
\end{aligned}
$$

We use the same trigonometric substitution $t=\frac{3 \tan (\theta)}{2}$, which gives

$$
\begin{aligned}
A & =4 \pi \int_{\pi / 4}^{\tan ^{-1}(2)} \sqrt{9 \sec ^{2}(\theta)} \frac{3}{2} \sec ^{2}(\theta) d \theta \\
& =18 \pi \int_{\pi / 4}^{\tan ^{-1}(2)} \sec (\theta)^{3} d \theta
\end{aligned}
$$

Remember that we can compute an antiderivative of $\sec (\theta)^{3}$ using an integration by parts with $u=\sec (\theta)$ and $d v=\sec (\theta)^{2} d \theta$, a trigonometric identity and collecting terms, as follows:

$$
\begin{aligned}
\int \sec (\theta)^{3} d \theta & =\sec (\theta) \tan (\theta)-\int \sec (\theta) \tan (\theta)^{2} d \theta \\
& =\sec (\theta) \tan (\theta)-\int \sec (\theta)\left(\sec (\theta)^{2}-1\right) d \theta \\
& =\sec (\theta) \tan (\theta)-\int \sec (\theta)^{3} d \theta+\int \sec (\theta) d \theta \\
& =\sec (\theta) \tan (\theta)-\int \sec (\theta)^{3} d \theta+\ln |\sec (\theta)+\tan (\theta)| \\
\Rightarrow 2 \int \sec (\theta)^{3} d \theta & =\sec (\theta) \tan (\theta)+\ln |\sec (\theta)+\tan (\theta)| \\
\Rightarrow \int \sec (\theta)^{3} d \theta & =\frac{1}{2}(\sec (\theta) \tan (\theta)+\ln |\sec (\theta)+\tan (\theta)|)+C .
\end{aligned}
$$

Using this for the surface area gives

$$
A=18 \pi\left[\frac{1}{2}(\sec (\theta) \tan (\theta)+\ln |\sec (\theta)+\tan (\theta)|)\right]_{\pi / 4}^{\tan ^{-1}(2)}
$$

$$
=9 \pi\left(2 \sqrt{5}-\sqrt{2}+\ln \left(\frac{2+\sqrt{5}}{1+\sqrt{2}}\right)\right) .
$$

(c) Set-up (but do not evaluate) an integral that computes the area of the surface of revolution obtained by revolving the curve about the x-axis. Solution.

$$
\begin{aligned}
A & =\int_{3 / 2}^{3} 2 \pi y(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{3 / 2}^{3} 2 \pi(3 \ln (t)+2) \frac{\sqrt{4 t^{2}+9}}{t} d t
\end{aligned}
$$

10. Consider the region \mathcal{R} in the $x y$-plane bounded by the lines $y=2 x, y=1$ and the graph $y=\sin \left(\frac{x}{2}\right)$.
(a) Sketch the region \mathcal{R}.

Solution.

(b) Calculate the area of the region using (i) an x-integral, and (i) a y-integral.

Solution. (i) The area is given by

$$
\begin{aligned}
A & =\int_{0}^{1 / 2}\left(2 x-\sin \left(\frac{x}{2}\right)\right) d x+\int_{1 / 2}^{\pi}\left(1-\sin \left(\frac{x}{2}\right)\right) d x \\
& =\left[x^{2}+2 \cos \left(\frac{x}{2}\right)\right]_{0}^{1 / 2}+\left[x+2 \cos \left(\frac{x}{2}\right)\right]_{1 / 2}^{\pi} \\
& =\frac{1}{4}+2 \cos \left(\frac{1}{4}\right)-2+\pi-\frac{1}{2}-2 \cos \left(\frac{1}{4}\right)
\end{aligned}
$$

$$
=\pi-\frac{9}{4}
$$

(ii) To use a y-integral, observe that the region can be described as $\frac{y}{2} \leqslant x \leqslant 2 \sin ^{-1}(y)$ for $0 \leqslant y \leqslant 1$. Therefore we obtain

$$
\begin{aligned}
A & =\int_{0}^{1}\left(2 \sin ^{-1}(y)-\frac{y}{2}\right) d y \\
& =2 \int_{0}^{1} \sin ^{-1}(y) d y-\left[\frac{y^{2}}{4}\right]_{0}^{1} \\
& =2 \int_{0}^{1} \sin ^{-1}(y) d y-\frac{1}{4}
\end{aligned}
$$

The remaining integral can be computed using IBP with $u=\sin ^{-1}(y)$ and $d v=d y$, so $d u=\frac{d y}{\sqrt{1-y^{2}}}$ and $v=y$. This gives

$$
\begin{aligned}
\int_{0}^{1} \sin ^{-1}(y) d y & =\left[y \sin ^{-1}(y)\right]_{0}^{1}-\int_{0}^{1} \frac{y}{\sqrt{1-y^{2}}} d y \\
& =\frac{\pi}{2}-\int_{1}^{0}-d w \\
& =\frac{\pi}{2}-1
\end{aligned}
$$

Therefore

$$
A=2\left(\frac{\pi}{2}-1\right)-\frac{1}{4}=\pi-\frac{9}{4}
$$

(c) A solid is obtained by revolving the region \mathcal{R} about the line $y=2$. Set-up integrals that calculate the volume of the solid using (i) the disk/washer method, and (ii) the shell method. Then evaluate one of the integrals to find the volume of the solid.

Solution. (i) Washers:

$$
V=\int_{0}^{1 / 2} \pi\left(\left(2-\sin \left(\frac{x}{2}\right)\right)^{2}-(2-2 x)^{2}\right) d x+\int_{1 / 2}^{\pi} \pi\left(\left(2-\sin \left(\frac{x}{2}\right)\right)^{2}-(2-1)^{2}\right) d x
$$

(ii) Shells:

$$
V=\int_{0}^{1} 2 \pi(2-y)\left(2 \sin ^{-1}(y)-\frac{y}{2}\right) d y
$$

Let us evaluate the integral from the washer method:

$$
\begin{aligned}
V & =\int_{0}^{\pi} \pi\left(2-\sin \left(\frac{x}{2}\right)\right)^{2} d x-\int_{0}^{1 / 2} \pi(2-2 x)^{2} d x-\int_{1 / 2}^{\pi} \pi d x \\
& =\pi\left(\int_{0}^{\pi}\left(4-4 \sin \left(\frac{x}{2}\right)+\sin ^{2}\left(\frac{x}{2}\right)\right) d x-4 \int_{0}^{1 / 2}(1-x)^{2} d x-\left(\pi-\frac{1}{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\pi\left(\int_{0}^{\pi}\left(4-4 \sin \left(\frac{x}{2}\right)+\frac{1-\cos (x)}{2}\right) d x-4\left[-\frac{(1-x)^{3}}{3}\right]_{0}^{1 / 2}-\left(\pi-\frac{1}{2}\right)\right) \\
& =\pi\left(\left[4 x+8 \cos \left(\frac{x}{2}\right)+\frac{x-\sin (x)}{2}\right]_{0}^{\pi}-\frac{4}{3}\left(-\frac{1}{8}+1\right)-\pi+\frac{1}{2}\right) \\
& =\pi\left(4 \pi+\frac{\pi}{2}-8-\frac{7}{6}-\pi+\frac{1}{2}\right) \\
& =\pi\left(\frac{7 \pi}{2}-\frac{26}{3}\right) .
\end{aligned}
$$

