Rutgers University
FA23 Math 152

Final Exam Practice Problems Solutions

1. (a) Find a function f(z) and an interval [a,b] so that the right endpoint Riemann sum of f(z) on the
interval [a, ] is
- 3 (Wk) m
g tan” | — | —.
4n J 8n
k=1

Solution. The function ‘ f(z) = tan®(22) ‘ on the interval [0, %} gives a possible solution.
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(b) Evaluate nh—>120 kzzjl tan (471) o

Solution.
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2. Consider the region R bounded by the curve y = €277, the line 2 = 5 and the line y = 3. The region R
is sketched below.



Set-up integrals computing the volume of the solid obtained by revolving R about each axis given below
using (i) the disk/washer method, and (ii) the shell method.

(a) x-axis

Solution.

(b) y-axis

Solution.

(¢) y=-1

Solution.

d) z=7

Solution.

() y=3

Solution.

(f) 2=—-4

Solution.
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3. Evaluate the following integrals. If an integral diverges, explain why.

(a) /d—m
(7 + 62 — 22)3/2
Solution. We complete the square and then use a trigonometric substitution. We have
T+6x—a?=7—(22—62)=7— ((x—3)*—9) =16 — (z — 3)%.

For the trigonometric substitution, we want 16 — (z — 3)? = 16 — 16sin(0)?, so we will set z — 3 =
z—3.

4sin(0). This gives dx = 4 cos(0)df and the following right triangle where sin(f) = %5

Therefore

dx B dx
/(7 + 62 — x2)3/2 /(16 — (z — 3)2)3/2
_ / 4 cos(6)do
(16 — 16 sin(6)2)3/2

B 4 cos(0)db
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(b) / e 3% dy
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Solution. We start by computing an antiderivative of the integrand using integration by parts twice.
For the first IBP, we will use

uw=2% = du=2xdz,

1
—3x 3z
= V= ——€"".

3

" Ze=3r 9 "
/x26_3d‘ =7 63 + g/xe_&das.

u=x = du=xdx,

dv=ce

We get

The second IBP uses



We get

922 4 62 + 2
27e3

We can now evaluate the improper integral.

0o b
22e73%dz = lim e 3%y
0 b— o0 0

o 79:1:2+6x+2 b
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(c) /0052(59) sin?(50)d0

Solution. Trigonometric integrals with powers of sin and cos both even can be dealt with using the
double-angle identities. We get

/0052(59) sin?(50)df = /1 + 0025(109) 1-— COQS(IOH) &0
1
= 1/ (1 — cos®(100)) db

_ i/ (1_ 1+c02s(209)) ”

1

= g/ (1 — cos(200)) db

|1 (0 sin(200)> Lol

8 20

() /ﬁdx
1 422 — 2



Solution. We use a trigonometric substitution. We want 422 — 2 = 2sec(f)? — 2, so we take
2 2

x = %sec(@), so that dz = %sec(@) tan(f)df. When z = 1, we have sec(f) = V2, s0 § = T,

When z = /2, we have sec(f) = 2, so § = 7. Therefore, the integral becomes

/‘/§ de /“/3 Y2 s0c(6) tan(6) &
L VA2 =2 Jap 2sec(0)? — 2
B /”/3 @ sec(6) tan(6)
B 7/4 \/itan(ﬁ)
1 /3
= f/ sec(6)db
2 w/4

_ 1 /3
=5 [In [ sec(6) + tan(8)|],

- % (1n(2 +V3) —In(1 + ﬁ)) .

(e) /\/Ecos(B\/E)dx

Solution. We start with the substitution w = 3/, which gives dw = 5(17'2, so dx = 2'%‘1“’ Hence

2wdw 2

/ V7 cos(3y/F)da = / 2 cos(uw) 2 = 2 / w? cos(w)duw.

We now use two successive IBPs. In the first one, we pick u = w? and v = cos(w), so du = 2wdw
and v = sin(w), and

/ w? cos(w)dw = w? sin(w) — / 2w sin(w)dw.

In the second IBP, we pick u = 2w and dv = sin(w), so that du = 2dw and v = — cos(w). We obtain
/w2 cos(w)dw = w? sin(w) — /2w sin(w)dw
= w?sin(w) — <2w(— cos(w)) — /2(— cos(w))dw)

= w? sin(w) + 2w cos(w) — 2/ cos(w)dw
= w?sin(w) + 2w cos(w) — 2sin(w) + C.
Going back to the z-integral, we obtain
2
/\/:Ecos(i%\/gf)dx = §/w2 cos(w)dw

= % (w? sin(w) + 2w cos(w) — 2sin(w)) + C

= % ((3v/x)?sin(3v/z) + 2(3v/z) cos(3y/z) — 2sin(3y/z)) + C

(92 sin(3v/x) + 6v/x cos(3v/z) — 2sin(3v/x)) + C'|
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3r/4
(f) / tan(z) sec®(x)dx
Solution. Let us start by finding the antiderivative using the substitution v = sec(x), du =
sec(z) tan(x)dz. We get

3
/tan(x) sec®(x)dx = /quu =2 tc= +C.

For the definite integral, observe that it is a type II improper integral because of the vertical asymp-
tote of the integrand at x = 7. We will need to compute this integral by splitting it up as

37 /4 /2 3n/4

/ tan(z) sec® (x)dx = / tan(z) sec® (x)dx + / tan(z) sec®(x)dx
/4 /4 m/2

and setting each summand as a limit. For the first summand, we have

/2 b
/ tan(z) sec®(x)dz = lim tan(z) sec®(x)dx
/4 e

37 /4
There is no need to go any further. We have found that / tan(z) sec® (x)dx diverges |.
/4

4. Find the area inside the circle 22 + y? = 3 and outside the circle 2% + y* + 2y = 0. (Hint: use polar
coordinates. )

Solution. We start by sketching the circles and converting their equations to polar. The first equation
22 4+ y? = 3 gives r2 = 3, so r = /3 is the polar equation. The second equation x> + y? + 2y = 0
becomes 72 + 2rsin(f) = 0, so we get » = 0 or 7 = —2sin(f). Since the origin is already on the graph of
r = —2sin(d), we can discard » = 0 and keep r = —2sin(6).



To find the values of § where the circles intersect, we equate the polar equations and solve for 0 < 0 < 27:

3 4 5
—2sin(f) = V3 = sin(h) = —g = 0= %, ?ﬂ-

We can also exploit the symmetry with respect to the y-axis and compute the area of the region in the

first and fourth quadrants, and double it. Therefore, the area will be computed by

A=2 (/0 % (\/??2 — (-2 sin(o))2) o + ;\/§2d0>

—m/3

/2

0

:/O (3 — 4sin(0)?) d0+/ﬂ/23d9

—7/3 0

O pa—
:/ (3_41 cos(20))d9+37r
s 2 2

0
:/ (14 2cos(20)) df + 3
—m/3 2

3
6 +sin(26)]°, 5 +

= — —E—x—sin 2 —|—37T
N 3 3 2

117 V3

6 2

. Find the length of the polar curve r = 6%, 0 < 0 < V2.

Solution. The length is given by

V3 2 V2 V2
L :/ 2 (Zg) dgz/ 65 + (469)°d0 :/ 6°\/62 + 16d6.
0 0 0



This integral can be calculated with the substitution u = 2 + 16, which gives du = 20df. The extraneous
factor #2 in the integrand can be replaced by u — 16. The integral becomes

L= / i(u —16)+/udu
1

6

1 /18
= f/ (u3/2 — 16u1/2) du
2J16

12 2 .,
_ 1 [u5/2 B 3u3/2}

2 5 3 6

1/2 32
~ (21872 —16°/%) — == (18%/2 —16%/%) ) |

6. Determine if the sequences below converge absolutely, converge conditionally or diverge. If a sequence
converges, find its limit.

0 ot (1o (2))

Solution. This is an indeterminate form oo - 0. We can calculate the limit by writing the expression
as a % quotient and using L’Hopital’s Rule. This gives

1— 5
lim n? (1 — sec <5)> = lim *(I)
n—oo n r—00

zZ
m%sec (5) tan (%)

€T

= —— lim
2 x—o0 — 4

= —§ lim 5 sec? <5>
2 r—o0 T

25
5 |

In(2" + 1)

(b) an = In(n)

Solution. This is an indeterminate form 22, so we can use L’Hopital’s Rule. We have

In(2)2°
(2" + 1 C
m RETED o 2T

1
T—00 ]n(x) T—00 T




Therefore, the sequence diverges.

7. Determine if the series below converge or diverge. If a series converges, find its sum when possible.

(a)

= cos(n) — 5"
Z 32n

n=0

Solution. Observe that

cos(n) = 5" _ cos(n) (5)”.

32n gn 9
S < cos(n) o 1 =1 . i I = 1 ded b
ince 0 < o | S gn and Z on converges as a geometric series with [r| = 5 < 1, we deduce that
=, cos(n) " = /5\"
Z on converges absolutely by the DCT. Also, Z (9) converges absolutely as a geometric
n=0 n=0

series with |r| = g < 1. Therefore, we have

i COS(’ggnf " i co;(ln) B i (g)n

n=0 n=0 n=0

) _5n
and Z % converges absolutely |.

n=0

> L
+1
n=1 5"

Solution. The series can be written as

203920 203 /4\"
2 T ;5@

so it is geometric. Since the common ratio r = % satisfies |r| < 1, the series converges absolutely
and its sum is

i&z% 52 12
=B 2
i S T S

c- (="
nz::?j ny/In(n)2 +1
Solution. We start by using the AST with a,, = \/ﬁ, which is positive, decreasing and con-

verges to 0 as the reciprocal of an increasing positive sequence going to infinity. Therefore, the series
converges.



We now need to determine if the convergence is absolute or conditional by inspecting the series

o

Sl G D DR S S
nz:;, n\/m _nz:;)n ln(n)Q—i—l'

1
zy/In(x)? 4+ 1
tive on [3,00). It is also decreasing as the reciprocal of a positive increasing function. Therefore, the

Integral Test applies and we can test for the convergence of the series by calculating the improper
> dx

3 zy/In(x)? + 1

Before we calculate the improper integral, let us start by finding an antiderivative. We first use the
substitution u = In(z), du = % to get

For this series, we use the Integral Test. The function f(x) = is continuous and posi-

integral

/ dv [ du
zy/In(x)? +1 RV

This integral can be calculated with the substitution u = tan(@), which gives du = sec?(#)df and
Vu? +1 = y/tan?(0) + 1 = sec(). The right triangle for this substitution has base angle # so that
tan(f) = u, as shown below.

u2+1

The integral becomes

/ac\/lnzli:v)2 +1 - /\/uciu—i— 1
_/5602(0)d9
sec(0)

= / sec(6)dd

= In|sec(f) + tan(0)| + C
=ln‘ u2+1+u‘+0

:ln‘\/ln(x)—Q—i-l—l-ln(x)‘—i-C.

Now for the improper integral, we get

i dx . b dx
el v e
s ol T+
= blggo (ln ‘\/er ln(b)’ —1In ’\/ln(?))ﬁnL 1n(3)D

= Q.

10



diverges, and thus Z

e dx
S
? /3 x\/ln(aj)Q +1 = n /

does not converge absolutely.

In conclusion, E

ot n\/ln

converges conditionally |

9n2 + 2
W 3 Yo
n=1
Solution. We use the LCT with the reference series Z Z , which converges as a p-series
with p = 3 > 1. The limit for the LCT is " "
L= lim =
n—oo n
In2+42
_ . 2n4
= Vin?
ford
= hm
_3
2
~ VOn? +2
Since 0 < L < 0o, both series have the same behavior, so Z 1217; converges absolutely |.
n
n=1

8. Find the radius and interval of convergence of the following power series.

() Y 2

n=1
Solution. We start by using the Root Test. We have

1/n
= lim

n—oo

9" (z + 3)"
n

p= lim
n— oo

The series converges absolutely when 2|z + 3| < 1, which
both endpoints.

2z +3|

i/ 2|z + 3.

gives f% <z < f%. We now need to test

o At x = —%, we have
y Ly O
n=1 n=1
This series converges by the AST since a,, = E is positive, decreasing and converges to 0.
o At x = we have

2’
’I'L

on
Z_:l(

This series diverges as a p-series with p = 1.

11
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n=1



In conclusion, we have | R = — | and | IOC = [; ;) .

o
Z e
2

n

n=0 5

Solution. We start by using the Root Test. We have

n-x

n2/n|:17|
52 -

n—oo hn

0.

p= lim

2,.n
n—oo

Therefore, the series converges absolutely for any value of . So| R = oo | and ‘ I0C = (—o0, 00) ‘

S D s
o \v/64™n + 1

Solution. We use the Root Test. We have

p= lim ’i/
n—oo

(_1)n+1(m+5)3n
1v/64"n + 1

3
TR L o
n— 00 (64"77, + 1)1/2n
3
lim = + 5|
— 1 \2/n
n— o0 8n1/2n (1 + 64"71)
x4+ 5|3
-8
since 1 )
lim 7l/20 = enih S — e = =e'=1
n—oo ’
3
So the series converges absolutely when % < 1,thatis -2 <z +5< 2,80 -7 <z < —3. When
x> —3 or x < —7, the series diverges. We now need to test the endpoints x = —3, —7.
When z = —3, we have

oo

3 (D" (345" _ i (=1)
V6 + 1 = Vet =Vt 6dn

n+18n oo (_1)n+1

n=0

. } . . _ 1 . eps
Let us check the assumptions of the AST for this series. The sequence a,, = e 8 positive.
We can see that a, is decreasing by observing that the function f(x) = z 4 64~ has a positive

derivative on [1,00):

647 — In(64)

(@) =1-In(64)647" = =

>0 when z > 1.

: 1 _ : SPRSCHN .
Also, nh_}n;o Tarer= = 0. Therefore, the AST applies and the series converges.

12



When x = —7, we have

i ()" (=T +5) i (=1)" 1 (=1)*"8" i 1
Vedrn +1 V6 +1 A nt e

n=0 n=0
We can use the LCT for this series with b,, = ﬁ We have
1 1

lim 7‘/@ = lim

n— 00 = n—00 /1 4 64—"np—1/2
B 1
V140
=1.

1
vn+ 64—

o0 o0
1
Furthermore, E ﬁ diverges as a p-series with p = % < 1. Therefore, the series E
n=1 n=0
diverges.

Conclusion: the radius of convergence is and the interval of convergence is | (=7, —3] |

/N
~
N
w

9. Consider the curve with parametric equations x = 2t,y = 31n(t) + 2,

N W

(a) Calculate the length of the curve.

Solution.

= 44 —dt

/3/2 t2

B /3 VA +9
32 1t -

We will compute this integral with a trigonometric substitution. We want 4¢% + 9 = 9tan?(¢) +9 =

_|_
9sec?(6), so we choose t = ?’taTn(o). Then we have dt = w. When ¢ = 3/2, we have tan(d) = 1
so 0 = 7/4. When t = 3, we have tan() = 2 so § = tan~!(2). It follows that

tan"1(2) /g ann2
L:/ Més 02(9)d0

/4 Bta;(f)) 2
—3 / T Osectt)” )
/4 tan(6)

tan~1(2) SQC(G) )
3/ﬂ/4 tan(@) (tan(6)* + 1) df

13



tan~1(2)
_3 / (sec(0) tan(8) + csc(0)) d
/4

= 3[sec(f) + In|csc(f) — Cot(Q)H:ra/Tl@)

= 3<\/5—\/§+1n <2(\\//g§__11)>> :

(b) Calculate the area of the surface of revolution obtained by revolving the curve about the y-axis.

3 dz\? dy 2
A= 2 — =
mW(dt) oy
3 2
g YAEF9

3/2

3
= 471'/ \4t2 + 9dt.
3/2

Solution. We have

=27

We use the same trigonometric substitution ¢ = ?’taTn(e), which gives
tan~1(2) 3
A=4n V9 SeC2(9)§ sec?(0)d6
/4
tan~1(2)
= 1877/ sec(h)3dh.
/4

Remember that we can compute an antiderivative of sec(f)? using an integration by parts with

u = sec(f) and dv = sec(#)2df, a trigonometric identity and collecting terms, as follows:
/sec(9)3d9 = sec(0) tan(f) — /sec(@) tan(0)%d6
= sec(0) tan(f) — /sec(ﬂ) (sec(6)® — 1) db
= sec(0) tan(f) — /560(9)3(19 + /Sec(e)dQ
— sec(6) tan(0) — / sec(8)3d0 + In|sec(d) + tan(0)|
= 9 / sec(8)2d0 = sec(8) tan(6) + In [sec(8) + tan(0)|

N / sec(0)3d6 = % (sec(0) tan(8) + In sec(8) + tan(0)]) + C.

Using this for the surface area gives

1 tan~1(2)
A=187 {2 (sec(f) tan(f) + In |sec(f) + tan(0)|)
w/4

14



245
= |97 (2\/_—\/§+1n<1+\/§>> .

(¢c) Set-up (but do not evaluate) an integral that computes the area of the surface of revolution obtained
by revolving the curve about the z-axis. Solution.

A= /;wa(t)\/(fl—ff + (%)2&

3
42
:/ 2n(3In(t) +2) Y2 9
3/2 13

10. Consider the region R in the xy-plane bounded by the lines y = 2z, y = 1 and the graph y = sin <§)

(a) Sketch the region R.

Solution.

2
y=2x (. 1)
1 & =l
s i
o
/ ~
~ 7, = sin (x/2)

(b) Calculate the area of the region using (i) an a-integral, and (i) a y-integral.

Solution. (1) The area is given by

T

A= [ o ())ars [ (1-an(3))

= {xQ + 2cos (g)};ﬂ + [x + 2cos (g)}jﬂ

1 1 1 1
—Z+2COS<Z> _2"‘”_5_2“)5(1)

15



(ii) To use a y-integral, observe that the region can be described as = < o < 2sin~!(y) for 0 < y < 1.

NS

Therefore we obtain

The remaining integral can be computed using IBP with u = sin™'(y) and dv = dy, so du = —%

Vi-

and v = y. This gives

1

1
sin~ ! (y)dy = [ysin™! L Ld
/O (y)dy = [y W], Vi

I
IERCIE
|
—
(=)
|
QU
g
7N
g
Il
—
|
NS
a[\.’)
QU
g
I
|
NS
<
[ V)
ISH
~
N—

Therefore

A solid is obtained by revolving the region R about the line y = 2. Set-up integrals that calculate
the volume of the solid using (i) the disk/washer method, and (ii) the shell method. Then evaluate
one of the integrals to find the volume of the solid.

Solution. (1) Washers:

T

V= /OI/QW <(2 ~sin (g))Q —(2- 2x)2) dx+/1/277 ((2 — sin (g))Q —(2- 1)2> dz

(ii) Shells:

V= /01271'(2 —9) (2Sin_1(y) - %) dy |.

1/2

s

Let us evaluate the integral from the washer method:
7(2 — 2x)%dx — / wdx

Ve [remn(z) e
= (/OW (41— 4sin(5) +sin? (3)) d:c—4/01/2(1 —2)2de — (7r— ;))

16
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