
Rutgers University
FA23 Math 152

Final Exam Practice Problems Solutions

1. (a) Find a function f(x) and an interval [a, b] so that the right endpoint Riemann sum of f(x) on the
interval [a, b] is

n∑
k=1

tan3
(
πk

4n

)
π

8n
.

Solution. The function f(x) = tan3(2x) on the interval
[
0,

π

8

]
gives a possible solution.

(b) Evaluate lim
n→∞

n∑
k=1

tan3
(
πk

4n

)
π

8n
.

Solution.

lim
n→∞

n∑
k=1

tan3
(
πk

4n

)
π

8n
=

∫ π/8

0

tan3(2x)dx

=

∫ π/8

0

tan(2x) tan2(2x)dx

=

∫ π/8

0

tan(2x)
(
sec2(2x)− 1

)
dx

=

∫ π/8

0

tan(2x) sec2(2x)dx−
∫ π/8

0

tan(2x)dx

=

∫ 1

0

u

2
du−

[
ln | sec(2x)|

2

]π/8
0

(u = tan(2x))

=

[
u2

4

]1
0

−
ln
(√

2
)

2

=
1− ln(2)

4
.

2. Consider the region R bounded by the curve y = e2−x, the line x = 5 and the line y = 3. The region R
is sketched below.
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y

x
5

3

y = e2−x

R

Set-up integrals computing the volume of the solid obtained by revolving R about each axis given below
using (i) the disk/washer method, and (ii) the shell method.

(a) x-axis

Solution. (i) V =

∫ 5

2−ln(3)

π
(
32 −

(
e2−x

)2)
dx , (ii) V =

∫ 3

e−3

2πy (5− (2− ln(y))) dy .

(b) y-axis

Solution. (i) V =

∫ 3

e−3

π
(
52 − (2− ln(y))

2
)
dy , (ii) V =

∫ 5

2−ln(3)

2πx
(
3− e2−x

)
dx .

(c) y = −1

Solution. (i) V =

∫ 5

2−ln(3)

π
(
(3 + 1)2 −

(
e2−x + 1

)2)
dx , (ii) V =

∫ 3

e−3

2π(y + 1) (5− (2− ln(y))) dy .

(d) x = 7

Solution. (i) V =

∫ 3

e−3

π
(
(7− (2− ln(y)))

2 − (7− 5)2
)
dy , (ii) V =

∫ 5

2−ln(3)

2π(7− x)
(
3− e2−x

)
dx .

(e) y = 3

Solution. (i) V =

∫ 5

2−ln(3)

π
(
3− e2−x

)2
dx , (ii) V =

∫ 3

e−3

2π(3− y) (5− (2− ln(y))) dy .

(f) x = −4

Solution. (i) V =

∫ 3

e−3

π
(
(5 + 4)2 − (2− ln(y) + 4)

2
)
dy , (ii) V =

∫ 5

2−ln(3)

2π(x+ 4)
(
3− e2−x

)
dx .
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3. Evaluate the following integrals. If an integral diverges, explain why.

(a)

∫
dx

(7 + 6x− x2)3/2

Solution. We complete the square and then use a trigonometric substitution. We have

7 + 6x− x2 = 7− (x2 − 6x) = 7− ((x− 3)2 − 9) = 16− (x− 3)2.

For the trigonometric substitution, we want 16 − (x − 3)2 = 16 − 16 sin(θ)2, so we will set x − 3 =
4 sin(θ). This gives dx = 4 cos(θ)dθ and the following right triangle where sin(θ) = x−3

4 :

√
16− (x− 3)2

x− 3
4

θ

Therefore ∫
dx

(7 + 6x− x2)3/2
=

∫
dx

(16− (x− 3)2)3/2

=

∫
4 cos(θ)dθ

(16− 16 sin(θ)2)3/2

=

∫
4 cos(θ)dθ

(16 cos(θ)2)3/2

=
1

16

∫
dθ

cos(θ)2

=
1

16

∫
sec(θ)2dθ

=
1

16
tan(θ) + C

=
x− 3

16
√
16− (x− 3)2

+ C .

(b)

∫ ∞

0

x2e−3xdx

Solution. We start by computing an antiderivative of the integrand using integration by parts twice.
For the first IBP, we will use

u = x2 ⇒ du = 2xdx,

dv = e−3x ⇒ v = −1

3
e3x.

We get ∫
x2e−3x = −x2e−3x

3
+

2

3

∫
xe−3xdx.

The second IBP uses

u = x ⇒ du = xdx,
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dv = e−3x ⇒ v = −1

3
e3x.

We get ∫
x2e−3x = −x2e−3x

3
− 2xe−3x

9
+

2

9

∫
e−3xdx

= −x2e−3x

3
− 2xe−3x

9
− 2e−3x

27
+ C

= −9x2 + 6x+ 2

27e3x
+ C.

We can now evaluate the improper integral.∫ ∞

0

x2e−3xdx = lim
b→∞

∫ b

0

x2e−3xdx

= lim
b→∞

[
−9x2 + 6x+ 2

27e3x

]b
0

= lim
b→∞

(
−9b2 + 6b+ 2

27e3b
+

2

27

)
=

2

27
− lim

b→∞

18b+ 6

81e3b
(L’H)

=
2

27
− lim

b→∞

18

243e3b
(L’H)

=
2

27
.

(c)

∫
cos2(5θ) sin2(5θ)dθ

Solution. Trigonometric integrals with powers of sin and cos both even can be dealt with using the
double-angle identities. We get∫

cos2(5θ) sin2(5θ)dθ =

∫
1 + cos(10θ)

2

1− cos(10θ)

2
dθ

=
1

4

∫ (
1− cos2(10θ)

)
dθ

=
1

4

∫ (
1− 1 + cos(20θ)

2

)
dθ

=
1

8

∫
(1− cos(20θ)) dθ

=
1

8

(
θ − sin(20θ)

20

)
+ C .

(d)

∫ √
2

1

dx√
4x2 − 2
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Solution. We use a trigonometric substitution. We want 4x2 − 2 = 2 sec(θ)2 − 2, so we take

x =

√
2

2
sec(θ), so that dx =

√
2

2
sec(θ) tan(θ)dθ. When x = 1, we have sec(θ) =

√
2, so θ = π

4 ,

When x =
√
2, we have sec(θ) = 2, so θ = π

3 . Therefore, the integral becomes∫ √
2

1

dx√
4x2 − 2

=

∫ π/3

π/4

√
2
2 sec(θ) tan(θ)√
2 sec(θ)2 − 2

dθ

=

∫ π/3

π/4

√
2
2 sec(θ) tan(θ)
√
2 tan(θ)

dθ

=
1

2

∫ π/3

π/4

sec(θ)dθ

=
1

2
[ln | sec(θ) + tan(θ)|]π/3π/4

=
1

2

(
ln(2 +

√
3)− ln(1 +

√
2)
)
.

(e)

∫ √
x cos(3

√
x)dx

Solution. We start with the substitution w = 3
√
x, which gives dw = 3dx

2
√
x
, so dx = 2wdw

3 . Hence∫ √
x cos(3

√
x)dx =

∫
w

3
cos(w)

2wdw

3
=

2

9

∫
w2 cos(w)dw.

We now use two successive IBPs. In the first one, we pick u = w2 and v = cos(w), so du = 2wdw
and v = sin(w), and ∫

w2 cos(w)dw = w2 sin(w)−
∫

2w sin(w)dw.

In the second IBP, we pick u = 2w and dv = sin(w), so that du = 2dw and v = − cos(w). We obtain∫
w2 cos(w)dw = w2 sin(w)−

∫
2w sin(w)dw

= w2 sin(w)−
(
2w(− cos(w))−

∫
2(− cos(w))dw

)
= w2 sin(w) + 2w cos(w)− 2

∫
cos(w)dw

= w2 sin(w) + 2w cos(w)− 2 sin(w) + C.

Going back to the x-integral, we obtain∫ √
x cos(3

√
x)dx =

2

9

∫
w2 cos(w)dw

=
2

9

(
w2 sin(w) + 2w cos(w)− 2 sin(w)

)
+ C

=
2

9

(
(3
√
x)2 sin(3

√
x) + 2(3

√
x) cos(3

√
x)− 2 sin(3

√
x)
)
+ C

=
2

9

(
9x sin(3

√
x) + 6

√
x cos(3

√
x)− 2 sin(3

√
x)
)
+ C .
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(f)

∫ 3π/4

π/4

tan(x) sec3(x)dx

Solution. Let us start by finding the antiderivative using the substitution u = sec(x), du =
sec(x) tan(x)dx. We get∫

tan(x) sec3(x)dx =

∫
u2du =

u3

3
+ C =

sec3(x)

3
+ C.

For the definite integral, observe that it is a type II improper integral because of the vertical asymp-
tote of the integrand at x = π

2 . We will need to compute this integral by splitting it up as∫ 3π/4

π/4

tan(x) sec3(x)dx =

∫ π/2

π/4

tan(x) sec3(x)dx+

∫ 3π/4

π/2

tan(x) sec3(x)dx

and setting each summand as a limit. For the first summand, we have∫ π/2

π/4

tan(x) sec3(x)dx = lim
b→π

2
−

∫ b

π/4

tan(x) sec3(x)dx

= lim
b→π

2
−

[
sec3(x)

3

]b
π/4

= lim
b→π

2
−

(
sec3(b)

3
− (

√
2)3

3

)
= ∞.

There is no need to go any further. We have found that

∫ 3π/4

π/4

tan(x) sec3(x)dx diverges .

4. Find the area inside the circle x2 + y2 = 3 and outside the circle x2 + y2 + 2y = 0. (Hint: use polar
coordinates.)

Solution. We start by sketching the circles and converting their equations to polar. The first equation
x2 + y2 = 3 gives r2 = 3, so r =

√
3 is the polar equation. The second equation x2 + y2 + 2y = 0

becomes r2 + 2r sin(θ) = 0, so we get r = 0 or r = −2 sin(θ). Since the origin is already on the graph of
r = −2 sin(θ), we can discard r = 0 and keep r = −2 sin(θ).
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To find the values of θ where the circles intersect, we equate the polar equations and solve for 0 ⩽ θ ⩽ 2π:

−2 sin(θ) =
√
3 ⇒ sin(θ) = −

√
3

2
⇒ θ =

4π

3
,
5π

3
.

We can also exploit the symmetry with respect to the y-axis and compute the area of the region in the
first and fourth quadrants, and double it. Therefore, the area will be computed by

A = 2

(∫ 0

−π/3

1

2

(√
3
2
− (−2 sin(θ))2

)
dθ +

∫ π/2

0

1

2

√
3
2
dθ

)

=

∫ 0

−π/3

(
3− 4 sin(θ)2

)
dθ +

∫ π/2

0

3dθ

=

∫ 0

−π/3

(
3− 4

1− cos(2θ)

2

)
dθ +

3π

2

=

∫ 0

−π/3

(1 + 2 cos(2θ)) dθ +
3π

2

= [θ + sin(2θ)]
0
−π/3 +

3π

2

= −
(
−π

3
+ sin

(
−2π

3

))
+

3π

2

=
11π

6
+

√
3

2
.

5. Find the length of the polar curve r = θ4, 0 ⩽ θ ⩽
√
2.

Solution. The length is given by

L =

∫ √
2

0

√
r2 +

(
dr

dθ

)2

dθ =

∫ √
2

0

√
θ8 + (4θ3)

2
dθ =

∫ √
2

0

θ3
√

θ2 + 16dθ.
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This integral can be calculated with the substitution u = θ2+16, which gives du = 2θdθ. The extraneous
factor θ2 in the integrand can be replaced by u− 16. The integral becomes

L =

∫ 18

16

1

2
(u− 16)

√
udu

=
1

2

∫ 18

16

(
u3/2 − 16u1/2

)
du

=
1

2

[
2

5
u5/2 − 32

3
u3/2

]18
16

=
1

2

(
2

5
(185/2 − 165/2)− 32

3
(183/2 − 163/2)

)
.

6. Determine if the sequences below converge absolutely, converge conditionally or diverge. If a sequence
converges, find its limit.

(a) an = n2

(
1− sec

(
5

n

))
Solution. This is an indeterminate form ∞ · 0. We can calculate the limit by writing the expression
as a 0

0 quotient and using L’Hopital’s Rule. This gives

lim
n→∞

n2

(
1− sec

(
5

n

))
= lim

x→∞

1− sec
(
5
x

)
1
x2

= lim
x→∞

5
x2 sec

(
5
x

)
tan

(
5
x

)
− 2

x3

= lim
x→∞

−5

2
sec

(
5

x

)
tan

(
5
x

)
1
x

(L’H)

=

(
lim
x→∞

−5

2
sec

(
5

x

))(
lim
x→∞

tan
(
5
x

)
1
x

)

= −5

2
lim
x→∞

− 5
x2 sec

2
(
5
x

)
− 1

x2

(L’H)

= −5

2
lim
x→∞

5 sec2
(
5

x

)
= −25

2
.

(b) an =
ln(2n + 1)

ln(n)

Solution. This is an indeterminate form ∞
∞ , so we can use L’Hopital’s Rule. We have

lim
x→∞

ln(2x + 1)

ln(x)
= lim

x→∞

ln(2)2x

2x+1
1
x

(L’H)

= lim
x→∞

ln(2)x

1 + 1
2x
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= ∞.

Therefore, the sequence diverges.

7. Determine if the series below converge or diverge. If a series converges, find its sum when possible.

(a)

∞∑
n=0

cos(n)− 5n

32n

Solution. Observe that
cos(n)− 5n

32n
=

cos(n)

9n
−
(
5

9

)n

.

Since 0 ⩽

∣∣∣∣cos(n)9n

∣∣∣∣ ⩽ 1

9n
and

∞∑
n=0

1

9n
converges as a geometric series with |r| = 1

9 < 1, we deduce that

∞∑
n=0

cos(n)

9n
converges absolutely by the DCT. Also,

∞∑
n=0

(
5

9

)n

converges absolutely as a geometric

series with |r| = 5
9 < 1. Therefore, we have

∞∑
n=0

cos(n)− 5n

32n
=

∞∑
n=0

cos(n)

9n
−

∞∑
n=0

(
5

9

)n

and

∞∑
n=0

cos(n)− 5n

32n
converges absolutely .

(b)

∞∑
n=1

3 · 22n

5n+1

Solution. The series can be written as

∞∑
n=1

3 · 22n

5n+1
=

∞∑
n=1

3

5

(
4

5

)n

so it is geometric. Since the common ratio r = 4
5 satisfies |r| < 1, the series converges absolutely

and its sum is
∞∑

n=1

3 · 22n

5n+1
=

12
25

1− 4
5

=
12

5
.

(c)

∞∑
n=3

(−1)n

n
√
ln(n)2 + 1

Solution. We start by using the AST with an = 1

n
√

ln(n)2+1
, which is positive, decreasing and con-

verges to 0 as the reciprocal of an increasing positive sequence going to infinity. Therefore, the series
converges.
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We now need to determine if the convergence is absolute or conditional by inspecting the series

∞∑
n=3

∣∣∣∣∣ (−1)n

n
√

ln(n)2 + 1

∣∣∣∣∣ =
∞∑

n=3

1

n
√

ln(n)2 + 1
.

For this series, we use the Integral Test. The function f(x) =
1

x
√
ln(x)2 + 1

is continuous and posi-

tive on [3,∞). It is also decreasing as the reciprocal of a positive increasing function. Therefore, the
Integral Test applies and we can test for the convergence of the series by calculating the improper

integral

∫ ∞

3

dx

x
√
ln(x)2 + 1

.

Before we calculate the improper integral, let us start by finding an antiderivative. We first use the
substitution u = ln(x), du = dx

x to get∫
dx

x
√
ln(x)2 + 1

=

∫
du√
u2 + 1

.

This integral can be calculated with the substitution u = tan(θ), which gives du = sec2(θ)dθ and√
u2 + 1 =

√
tan2(θ) + 1 = sec(θ). The right triangle for this substitution has base angle θ so that

tan(θ) = u, as shown below.

1

u

√
u2 + 1

θ

The integral becomes ∫
dx

x
√

ln(x)2 + 1
=

∫
du√
u2 + 1

=

∫
sec2(θ)dθ

sec(θ)

=

∫
sec(θ)dθ

= ln | sec(θ) + tan(θ)|+ C

= ln
∣∣∣√u2 + 1 + u

∣∣∣+ C

= ln
∣∣∣√ln(x)2 + 1 + ln(x)

∣∣∣+ C.

Now for the improper integral, we get∫ ∞

3

dx

x
√
ln(x)2 + 1

= lim
b→∞

∫ b

3

dx

x
√
ln(x)2 + 1

= lim
b→∞

[
ln
∣∣∣√ln(x)2 + 1 + ln(x)

∣∣∣]∞
3

= lim
b→∞

(
ln
∣∣∣√ln(b)2 + 1 + ln(b)

∣∣∣− ln
∣∣∣√ln(3)2 + 1 + ln(3)

∣∣∣)
= ∞.

10



So

∫ ∞

3

dx

x
√
ln(x)2 + 1

diverges, and thus

∞∑
n=3

(−1)n

n
√
ln(n)2 + 1

does not converge absolutely.

In conclusion,

∞∑
n=3

(−1)n

n
√
ln(n)2 + 1

converges conditionally .

(d)

∞∑
n=1

√
9n2 + 2

2n4

Solution. We use the LCT with the reference series

∞∑
n=1

√
n2

n4
=

∞∑
n=1

1

n3
, which converges as a p-series

with p = 3 > 1. The limit for the LCT is

L = lim
n→∞

an
bn

= lim
n→∞

√
9n2+2
2n4
√
n2

n4

= lim
n→∞

√
9 + 2

n2

2

=
3

2
.

Since 0 < L < ∞, both series have the same behavior, so

∞∑
n=1

√
9n2 + 2

2n4
converges absolutely .

8. Find the radius and interval of convergence of the following power series.

(a)

∞∑
n=1

2n(x+ 3)n

n

Solution. We start by using the Root Test. We have

ρ = lim
n→∞

∣∣∣∣2n(x+ 3)n

n

∣∣∣∣1/n = lim
n→∞

2|x+ 3|
n1/n

= 2|x+ 3|.

The series converges absolutely when 2|x+ 3| < 1, which gives − 7
2 < x < − 5

2 . We now need to test
both endpoints.

� At x = − 7
2 , we have

∞∑
n=1

2n(− 7
2 + 3)n

n
=

∞∑
n=1

(−1)n

n
.

This series converges by the AST since an = 1
n is positive, decreasing and converges to 0.

� At x = − 5
2 , we have

∞∑
n=1

2n(− 5
2 + 3)n

n
=

∞∑
n=1

1

n
.

This series diverges as a p-series with p = 1.
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In conclusion, we have R =
1

2
and IOC =

[
−7

2
,−5

2

)
.

(b)

∞∑
n=0

n2xn

5n2

Solution. We start by using the Root Test. We have

ρ = lim
n→∞

∣∣∣∣n2xn

5n2

∣∣∣∣ = lim
n→∞

n2/n|x|
5n

= 0.

Therefore, the series converges absolutely for any value of x. So R = ∞ and IOC = (−∞,∞) .

(c)

∞∑
n=0

(−1)n+1(x+ 5)3n√
64nn+ 1

Solution. We use the Root Test. We have

ρ = lim
n→∞

n

√∣∣∣∣ (−1)n+1(x+ 5)3n√
64nn+ 1

∣∣∣∣
= lim

n→∞

|x+ 5|3

(64nn+ 1)1/2n

= lim
n→∞

|x+ 5|3

8n1/2n
(
1 + 1

64nn

)2/n
=

|x+ 5|3

8

since

lim
n→∞

n1/2n = e
lim

n→∞
ln(n)
2n = e

lim
n→∞

1/n
2 = e0 = 1.

So the series converges absolutely when |x+5|3
8 < 1, that is −2 < x+ 5 < 2, so −7 < x < −3. When

x > −3 or x < −7, the series diverges. We now need to test the endpoints x = −3,−7.

When x = −3, we have

∞∑
n=0

(−1)n+1(−3 + 5)3n√
64nn+ 1

=

∞∑
n=0

(−1)n+18n√
64nn+ 1

=

∞∑
n=0

(−1)n+1

√
n+ 64−n

.

Let us check the assumptions of the AST for this series. The sequence an = 1√
n+64−n

is positive.

We can see that an is decreasing by observing that the function f(x) = x + 64−x has a positive
derivative on [1,∞):

f ′(x) = 1− ln(64)64−x =
64x − ln(64)

64x
> 0 when x ⩾ 1.

Also, lim
n→∞

1√
n+64−n

= 0. Therefore, the AST applies and the series converges.
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When x = −7, we have

∞∑
n=0

(−1)n+1(−7 + 5)3n√
64nn+ 1

=

∞∑
n=0

(−1)n+1(−1)3n8n√
64nn+ 1

= −
∞∑

n=0

1√
n+ 64−n

.

We can use the LCT for this series with bn = 1√
n
. We have

lim
n→∞

1√
n+64−n

1√
n

= lim
n→∞

1√
1 + 64−nn−1/2

=
1√
1 + 0

= 1.

Furthermore,

∞∑
n=1

1√
n

diverges as a p-series with p = 1
2 ⩽ 1. Therefore, the series

∞∑
n=0

1√
n+ 64−n

diverges.

Conclusion: the radius of convergence is R = 2 and the interval of convergence is (−7,−3] .

9. Consider the curve with parametric equations x = 2t, y = 3 ln(t) + 2,
3

2
⩽ t ⩽ 3.

(a) Calculate the length of the curve.

Solution.

L =

∫ 3

3/2

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ 3

3/2

√
(2)

2
+

(
3

t

)2

dt

=

∫ 3

3/2

√
4 +

9

t2
dt

=

∫ 3

3/2

√
4t2 + 9

t
dt.

We will compute this integral with a trigonometric substitution. We want 4t2 + 9 = 9 tan2(θ) + 9 =

9 sec2(θ), so we choose t = 3 tan(θ)
2 . Then we have dt = 3 sec2(θ)dθ

2 . When t = 3/2, we have tan(θ) = 1
so θ = π/4. When t = 3, we have tan(θ) = 2 so θ = tan−1(2). It follows that

L =

∫ tan−1(2)

π/4

√
9 sec2(θ)
3 tan(θ)

2

3

2
sec2(θ)dθ

= 3

∫ tan−1(2)

π/4

sec(θ)3

tan(θ)
dθ

= 3

∫ tan−1(2)

π/4

sec(θ)

tan(θ)

(
tan(θ)2 + 1

)
dθ

13



= 3

∫ tan−1(2)

π/4

(sec(θ) tan(θ) + csc(θ)) dθ

= 3 [sec(θ) + ln |csc(θ)− cot(θ)|]tan
−1(2)

π/4

= 3

(
√
5−

√
2 + ln

( √
5− 1

2
(√

2− 1
))) .

(b) Calculate the area of the surface of revolution obtained by revolving the curve about the y-axis.

Solution. We have

A =

∫ 3

3/2

2πx(t)

√(
dx

dt

)2

+

(
dy

dt

)2

dt

= 2π

∫ 3

3/2

2t

√
4t2 + 9

t
dt

= 4π

∫ 3

3/2

√
4t2 + 9dt.

We use the same trigonometric substitution t = 3 tan(θ)
2 , which gives

A = 4π

∫ tan−1(2)

π/4

√
9 sec2(θ)

3

2
sec2(θ)dθ

= 18π

∫ tan−1(2)

π/4

sec(θ)3dθ.

Remember that we can compute an antiderivative of sec(θ)3 using an integration by parts with
u = sec(θ) and dv = sec(θ)2dθ, a trigonometric identity and collecting terms, as follows:∫

sec(θ)3dθ = sec(θ) tan(θ)−
∫

sec(θ) tan(θ)2dθ

= sec(θ) tan(θ)−
∫

sec(θ)
(
sec(θ)2 − 1

)
dθ

= sec(θ) tan(θ)−
∫

sec(θ)3dθ +

∫
sec(θ)dθ

= sec(θ) tan(θ)−
∫

sec(θ)3dθ + ln |sec(θ) + tan(θ)|

⇒ 2

∫
sec(θ)3dθ = sec(θ) tan(θ) + ln |sec(θ) + tan(θ)|

⇒
∫

sec(θ)3dθ =
1

2
(sec(θ) tan(θ) + ln |sec(θ) + tan(θ)|) + C.

Using this for the surface area gives

A = 18π

[
1

2
(sec(θ) tan(θ) + ln |sec(θ) + tan(θ)|)

]tan−1(2)

π/4
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= 9π

(
2
√
5−

√
2 + ln

(
2 +

√
5

1 +
√
2

))
.

(c) Set-up (but do not evaluate) an integral that computes the area of the surface of revolution obtained
by revolving the curve about the x-axis. Solution.

A =

∫ 3

3/2

2πy(t)

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ 3

3/2

2π(3 ln(t) + 2)

√
4t2 + 9

t
dt

10. Consider the region R in the xy-plane bounded by the lines y = 2x, y = 1 and the graph y = sin
(x
2

)
.

(a) Sketch the region R.

Solution.

(b) Calculate the area of the region using (i) an x-integral, and (i) a y-integral.

Solution. (i) The area is given by

A =

∫ 1/2

0

(
2x− sin

(x
2

))
dx+

∫ π

1/2

(
1− sin

(x
2

))
dx

=
[
x2 + 2 cos

(x
2

)]1/2
0

+
[
x+ 2 cos

(x
2

)]π
1/2

=
1

4
+ 2 cos

(
1

4

)
− 2 + π − 1

2
− 2 cos

(
1

4

)
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= π − 9

4

(ii) To use a y-integral, observe that the region can be described as
y

2
⩽ x ⩽ 2 sin−1(y) for 0 ⩽ y ⩽ 1.

Therefore we obtain

A =

∫ 1

0

(
2 sin−1(y)− y

2

)
dy

= 2

∫ 1

0

sin−1(y)dy −
[
y2

4

]1
0

= 2

∫ 1

0

sin−1(y)dy − 1

4
.

The remaining integral can be computed using IBP with u = sin−1(y) and dv = dy, so du = dy√
1−y2

and v = y. This gives∫ 1

0

sin−1(y)dy =
[
y sin−1(y)

]1
0
−
∫ 1

0

y√
1− y2

dy

=
π

2
−
∫ 0

1

− dw

(
w =

√
1− y2, dw = − y√

1− y2
dt

)
=

π

2
− 1.

Therefore

A = 2
(π
2
− 1
)
− 1

4
= π − 9

4
.

(c) A solid is obtained by revolving the region R about the line y = 2. Set-up integrals that calculate
the volume of the solid using (i) the disk/washer method, and (ii) the shell method. Then evaluate
one of the integrals to find the volume of the solid.

Solution. (i) Washers:

V =

∫ 1/2

0

π

((
2− sin

(x
2

))2
− (2− 2x)

2

)
dx+

∫ π

1/2

π

((
2− sin

(x
2

))2
− (2− 1)

2

)
dx

(ii) Shells:

V =

∫ 1

0

2π(2− y)
(
2 sin−1(y)− y

2

)
dy .

Let us evaluate the integral from the washer method:

V =

∫ π

0

π
(
2− sin

(x
2

))2
dx−

∫ 1/2

0

π(2− 2x)2dx−
∫ π

1/2

πdx

= π

(∫ π

0

(
4− 4 sin

(x
2

)
+ sin2

(x
2

))
dx− 4

∫ 1/2

0

(1− x)2dx−
(
π − 1

2

))

16



= π

(∫ π

0

(
4− 4 sin

(x
2

)
+

1− cos(x)

2

)
dx− 4

[
− (1− x)3

3

]1/2
0

−
(
π − 1

2

))

= π

([
4x+ 8 cos

(x
2

)
+

x− sin(x)

2

]π
0

− 4

3

(
−1

8
+ 1

)
− π +

1

2

)
= π

(
4π +

π

2
− 8− 7

6
− π +

1

2

)
= π

(
7π

2
− 26

3

)
.
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