
Rutgers University
FA23 Math 152

Midterm Exam 3 Practice Problems Solutions

1. Determine if the sequences below converge or diverge, and find their limit in case of convergence.
Basic:

(a)

{
en

2

n3

}
Solution. The limit of this sequence is an indeterminate form ∞

∞ , so we can use L’Hôpital’s Rule
(twice) to find

lim
n→∞

en
2

n3
= lim

x→∞

ex
2

x3

L′H
=
∞
∞

lim
x→∞

2xex
2

3x2

= lim
x→∞

2ex
2

3x

L′H
=
∞
∞

lim
x→∞

4xex
2

3

= ∞.

Therefore, the sequence

{
en

2

n3

}
diverges .

(b)

{
n ln

(
1− 2

5n

)}
Solution. The limit of this sequence is an indeterminate form 0×∞. We can rewrite the expression
as a fraction and then apply L’Hôpital’s Rule. This gives

lim
n→∞

n ln

(
1− 2

5n

)
= lim

x→∞

ln
(
1− 2

5x

)
1
x

L′H
=
0
0

1
1−2/5x · 2

5x2

− 1
x2

= lim
x→∞

− 1

1− 2/5x
· 2
5

= −2

5

So the sequence

{
n ln

(
1− 2

5n

)}
converges to the limit − 2

5
.
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Advanced:

(c)

{
2n + arctan(n)

2n+5

}
Solution. Since −π

2 ⩽ arctan(n) ⩽ π
2 , we have

2n − π
2

2n+5
⩽

2n + arctan(n)

2n+5
⩽

2n + π
2

2n+5
.

Also, we have

lim
n→∞

2n − π
2

2n+5
· 2

−n

2−n
= lim

n→∞

1− π
2 2

−n

25
=

1− 0

25
=

1

32
,

lim
n→∞

2n + π
2

2n+5
· 2

−n

2−n
= lim

n→∞

1 + π
2 2

−n

25
=

1 + 0

25
=

1

32
.

So by the Squeeze Theorem, the sequence

{
2n + arctan(n)

2n+5

}
converges to the limit

1

32
.

(d)
{
cos(e−n)e

2n
}

Solution. This is an indeterminate power 1∞. We can write the limit using logs as

lim
n→∞

cos(e−n)e
2n

= lim
n→∞

ee
2n ln(cos(e−n)).

For the exponent, we have

lim
n→∞

e2n ln(cos(e−n)) = lim
x→∞

ln(cos(e−x))

e−2x

L′H
=
0
0

lim
x→∞

− tan(e−x)(−e−x)

−2e−2x

= lim
x→∞

− tan(e−x)

2e−x

L′H
=
0
0

lim
x→∞

− sec2(e−x)(−e−x)

−e−x

= lim
x→∞

− sec2(e−x)

2

= − sec2(0)

2

= −1

2
.

Therefore, the original limit turns out to be

lim
n→∞

cos(e−n)e
2n

= lim
n→∞

ee
2n ln(cos(e−n)) = e−1/2.

So the sequence
{
cos(e−n)e

2n
}

converges to the limit e−1/2 .
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2. Determine if the series below converge absolutely, converge conditionally or diverge. Name any test used
and show all work to justify its use. In case of convergence, evaluate the sum when possible.
Basic:

(a)

∞∑
n=1

(−5)n + 1

32n+1

Solution. We can write this series as the sum of two convergent geometric series:

∞∑
n=1

(−5)n + 1

32n+1
=

∞∑
n=1

1

3

(
−5

9

)n

+

∞∑
n=1

1

3

(
1

9

)n

.

The first series is geometric with common ratio r = − 5
9 so it converges absolutely since |r| < 1. The

second series is geometric with common ratio r = 1
9 so it converges absolutely since |r| < 1. Therefore,

∞∑
n=1

(−5)n + 1

32n+1
converges absolutely . Its sum evaluates to

∞∑
n=1

(−5)n + 1

32n+1
=

∞∑
n=1

1

3

(
−5

9

)n

+

∞∑
n=1

1

3

(
1

9

)n

=
− 5

27

1 + 5
9

+
1
27

1− 1
9

= − 13

168
.

(b)

∞∑
n=1

e−
√
n

√
n

Solution. We use the Integral Test with the function f(x) =
e−

√
x

√
x

.

� f(x) =
e−

√
x

√
x

> 0 on [1,∞).

� f(x) =
e−

√
x

√
x

is continuous on [1,∞).

� Writing the function as f(x) =
1

e
√
x
√
x
, we also see that the function is decreasing as the reciprocal

of a positive increasing function.

So the Integral Test applies and we can determine whether the series converges or diverges by com-
puting the corresponding improper integral. We have∫ ∞

1

e−
√
x

√
x

dx = lim
b→∞

∫ b

1

e−
√
x

√
x

dx

= lim
b→∞

∫ √
b

1

2e−udu

(
u =

√
x, du =

dx

2
√
x

)
= lim

b→∞

[
−2e−u

]√b

1

= lim
b→∞

(
2e−1 − 2e−

√
b
)

= 2e−1.
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Therefore, the improper integral

∫ ∞

1

e−
√
x

√
x

dx converges. It follows that

∞∑
n=1

e−
√
n

√
n

converges (absolutely) .

(c)

∞∑
n=1

(
5 +

3

n

)2

Solution. Since

lim
n→∞

(
5 +

3

n

)2

= (5 + 0)2 = 25 ̸= 0,

the Term Divergence Test guarantees that

∞∑
n=1

(
5 +

3

n

)2

diverges .

(d)

∞∑
n=0

3n + 2

7
√
25n + 1

Solution. We will use the LCT with the reference series

∞∑
n=0

3n√
25n

=

∞∑
n=0

(
3

5

)n

, which converges as

a geometric series with common ratio r = 3
5 , |r| < 1. We have

L = lim
n→∞

an
bn

= lim
n→∞

3n+2
7
√
25n+1
3n√
25n

= lim
n→∞

1 + 2
3n

7
√

1 + 1
25n

=
1

7
.

Since 0 < L < ∞, both series have the same behavior. So

∞∑
n=0

3n + 2

7
√
25n + 1

converges (absolutely) .

(e)

∞∑
n=1

(−1)n

nπ

Solution. We test for absolute convergence. Observe that

∞∑
n=1

∣∣∣∣ (−1)n

nπ

∣∣∣∣ = ∞∑
n=1

1

nπ

which converges as a p-series with p = π > 1. Therefore,

∞∑
n=1

(−1)n

nπ
converges absolutely .

Remark: the AST applies here, but only gives convergence (does not say if the converge is absolute
or conditional).
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(f)

∞∑
n=1

(−1)n

2n+ 5
√
n

Solution. This series is alternating. We apply the AST with the sequence an =
1

2n+ 5
√
n
. We have

�

1

2n+ 5
√
n
⩾ 0 for all n > 0.

�

{
1

2n+ 5
√
n

}
is decreasing as the reciprocal of a positive increasing sequence.

� lim
n→∞

1

2n+ 5
√
n
= 0.

So the AST applies and we deduce that

∞∑
n=1

(−1)n

2n+ 5
√
n

converges.

To determine if the convergence is absolute or conditional, observe that

∞∑
n=1

∣∣∣∣ (−1)n

2n+ 5
√
n

∣∣∣∣ = ∞∑
n=1

1

2n+ 5
√
n
.

For this series, we use the LCT with the reference series

∞∑
n=1

1

n
, which diverges as a p-series with

p = 1. We have

L = lim
n→∞

an
bn

= lim
n→∞

1
2n+5

√
n

1
n

= lim
n→∞

1

2 + 5√
n

=
1

2
.

Since 0 < L < ∞, both series have the same behavior. So

∞∑
n=1

∣∣∣∣ (−1)n

2n+ 5
√
n

∣∣∣∣ diverges.
In conclusion,

∞∑
n=1

(−1)n

2n+ 5
√
n

converges conditionally .

(g)

∞∑
n=1

(n+ 3)!

(−5)n

Solution. The presence of factorials strongly suggests using the Ratio Test. We have

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
= lim

n→∞

∣∣∣∣ (n+ 4)!

(−5)n+1
· (−5)n

(n+ 3)!

∣∣∣∣
= lim

n→∞

n+ 4

5

= ∞.
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Since ρ > 1, we conclude that

∞∑
n=1

(n+ 3)!

(−5)n
diverges .

(h)

∞∑
n=1

nn

3n2

Solution. Using the Root Test, we have

ρ = lim
n→∞

|an|1/n

= lim
n→∞

(
nn

3n2

)1/n

= lim
n→∞

n

3n

= lim
x→∞

x

3x

=
L′H
=
∞
∞

lim
x→∞

1

ln(3)3x

= 0.

Since ρ < 1, we conclude that

∞∑
n=1

nn

3n2 converges absolutely .

(i)

∞∑
n=1

5 cos(n)− 2

n2

Solution. We test for absolute convergence with the DCT. We have −1 ⩽ cos(n) ⩽ 1, so −7 ⩽
5 cos(n)− 2 ⩽ 3. Therefore, 0 ⩽ |5 cos(n)− 2| ⩽ 7. So we have

0 ⩽

∣∣∣∣5 cos(n)− 2

n2

∣∣∣∣ 7

n2
,

and

∞∑
n=1

1

n2
converges as a p-series with p = 2 > 1. It follows that

∞∑
n=1

5 cos(n)− 2

n2
converges absolutely .

Advanced:

(j)

∞∑
n=3

(
n+ 3

n

)n2

Solution. We use the Root Test. We have

ρ = lim
n→∞

|an|1/n = lim
n→∞

(
n+ 3

n

)n

= lim
n→∞

en ln(1+ 3
n ).
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We now compute the limit of the exponent using L’Hôpital’s Rule:

lim
n→∞

n ln

(
1 +

3

n

)
= lim

x→∞

ln(1 + 3/x)
1
x

L′H
=
0
0

− 3
x2 · 1

1+3/x

− 1
x2

= lim
x→∞

3

1 + 3/x

= 3.

So
ρ = lim

n→∞
en ln(1+ 3

n ) = e3.

Since ρ > 1, we conclude that

∞∑
n=3

(
n+ 3

n

)n2

diverges .

(k)

∞∑
n=1

2n2 + 3 cos(n)

n4 + 1

Solution. We use the LCT with the reference series

∞∑
n=1

n2

n4
=

∞∑
n=1

1

n2
, which converges as a p-series

with p = 2 > 1. We have

L = lim
n→∞

an
bn

= lim
n→∞

2n2+3 cos(n)
n4+1

n2

n4

= lim
n→∞

2 + 3 cos(n)
n2

1 + 1
n4

.

To finish computing this limit, we must use the Squeeze Theorem. Since −1 ⩽ cos(n) ⩽ 1, we have

− 3

n2
⩽

3 cos(n)

n2
⩽

3

n2
.

Since lim
n→∞

− 3

n2
= lim

n→∞

3

n2
= 0, we conclude that lim

n→∞

3 cos(n)

n2
= 0. Therefore, our limit for the

LCT becomes

L = lim
n→∞

2 + 3 cos(n)
n2

1 + 1
n4

=
2 + 0

1 + 0
= 2.

Since 0 < L < 0, the two series have the same behavior. So

∞∑
n=1

2n2 + 3 cos(n)

n4 + 1
converges (absolutely) .

(l)

∞∑
n=2

(−1)n

n ln(n)

Solution. This series is alternating. We use the AST with an =
1

n ln(n)
.
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�

1

n ln(n)
⩾ 0 for all n > 0.

�

{
1

n ln(n)

}
is decreasing as the reciprocal of a positive increasing sequence.

� lim
n→∞

1

n ln(n)
= 0.

So the AST applies and we deduce that

∞∑
n=2

(−1)n

n ln(n)
converges.

To determine if the convergence is absolute or conditional, we look at

∞∑
n=2

∣∣∣∣ (−1)n

n ln(n)

∣∣∣∣ = ∞∑
n=2

1

n ln(n)
.

For this series, we can apply the Integral Test with the function f(x) =
1

x ln(x)
. This function is

positive, continuous and decreasing on the interval [2,∞). Therefore, the Integral Test applies and
we can determine whether the series converges or diverges by computing the corresponding improper
integral. We have ∫ ∞

2

dx

x ln(x)
= lim

b→∞

∫ b

2

dx

x ln(x)

= lim
b→∞

[ln | ln(x)|]b2
= lim

b→∞
(ln | ln(b)| − ln | ln(2)|)

= ∞.

Since

∫ ∞

2

dx

x ln(x)
diverges, we conclude that

∞∑
n=2

∣∣∣∣ (−1)n

n ln(n)

∣∣∣∣ diverges.
Therefore,

∞∑
n=2

(−1)n

n ln(n)
converges conditionally .

(m)

∞∑
n=1

(n!)2en

(2n)!

Solution. We use the Ration Test. We have

ρ lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
= lim

n→∞

∣∣∣∣ ((n+ 1)!)2en+1

(2(n+ 1))!
· (2n)!

(n!)2en

∣∣∣∣
= lim

n→∞

((n+ 1)!)2en+1(2n)!

(2n+ 2)!(n!)2

= lim
n→∞

(n+ 1)2e

(2n+ 1)(2n+ 2)
·

1
n2

1
n2

= lim
n→∞

(
1 + 1

n

)2
e(

2 + 1
n

) (
2 + 2

n

)
=

e

4
.
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Since ρ < 1, we conclude that

∞∑
n=1

(n!)2en

(2n)!
converges absolutely .

(n)

∞∑
n=3

(
tan

(π
n

)
− tan

(
π

n+ 2

))

Solution. Writing out the first few terms of the partial sum SN =

N∑
n=3

(
tan

(π
n

)
− tan

(
π

n+ 2

))
reveals a telescoping series. More precisely, observe that

SN =
(
tan

(π
3

)
− tan

(π
5

))
+

(
tan

(π
4

)
− tan

(π
6

))
+
(
tan

(π
5

)
− tan

(π
7

))
+ · · ·

· · ·+
(
tan

(
π

N − 1

)
− tan

(
π

N + 1

))
+

(
tan

( π

N

)
− tan

(
π

N + 2

))
= tan

(π
3

)
+ tan

(π
4

)
− tan

(
π

N + 1

)
− tan

(
π

N + 2

)
.

Therefore

∞∑
n=3

(
tan

(π
n

)
− tan

(
π

n+ 2

))
= lim

N→∞
SN

= lim
N→∞

(
tan

(π
3

)
+ tan

(π
4

)
− tan

(
π

N + 1

)
− tan

(
π

N + 2

))
= tan

(π
3

)
+ tan

(π
4

)
− tan (0)− tan (0)

=
√
3 + 1 .

(o)

∞∑
n=1

ln(n)2

n

Solution. Note that the first term of the series is 0. We use the DCT. Since ln is an increasing
function, we have

ln(n)2

n
⩾

ln(2)2

n
⩾ 0

for all n ⩾ 2. The series

∞∑
n=2

ln(2)2

n
= ln(2)2

∞∑
n=1

1

n
diverges as a p-series with p = 1. Therefore,

∞∑
n=1

ln(n)2

n
diverges .

3. Consider the series S =

∞∑
n=1

(−1)n

(3n+ 11)2
.

(a) (Basic) Show that this series meets the conditions of the Alternating Series Estimation Theorem.

Solution. We have
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�

1

(3n+ 11)2
⩾ 0.

�

{
1

(3n+ 11)2

}
is decreasing since

1

(3(n+ 1) + 11)2
<

1

(3n+ 11)2
.

� lim
n→∞

1

(3n+ 11)2
= 0.

Therefore,

∞∑
n=1

(−1)n

(3n+ 11)2
meets the conditions of the ASET .

(b) (Advanced) Find the smallest integer N for which the partial sum SN =

N∑
n=1

(−1)n

(3n+ 11)2
approxi-

mates the sum of the series S with an error of at most 0.0001.

Solution. The ASET tells us that the error is bounded by aN+1. Therefore, we will want

aN+1 < 0.0001

1

(3(N + 1) + 11)2
< 0.0001

(3N + 14)2 > 10000

3N + 14 > 100

3N > 86

N >
86

3
.

Therefore the smallest integer N giving us the desired level of accuracy is N = 29 .
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