Learning Goals

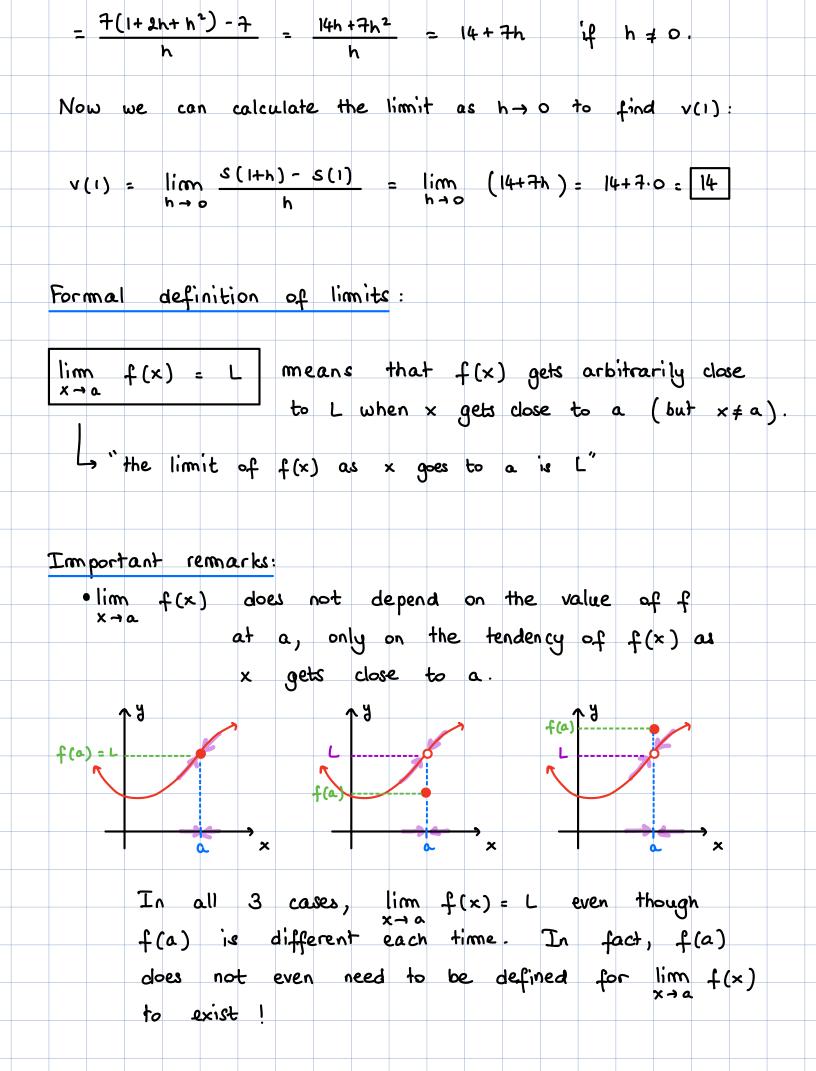
inter	2.1.1 Compute the average rate of change of a function over an interval.2.1.2 Use the second lines of a surve to find the line tongent to that											1-6.					
2.1.2 Use the secant lines of a curve to find the line tangent to that curve at a point.												7-18.					
2.1.3	3 Solve	Solve applications involving rates of change.										19-26.					

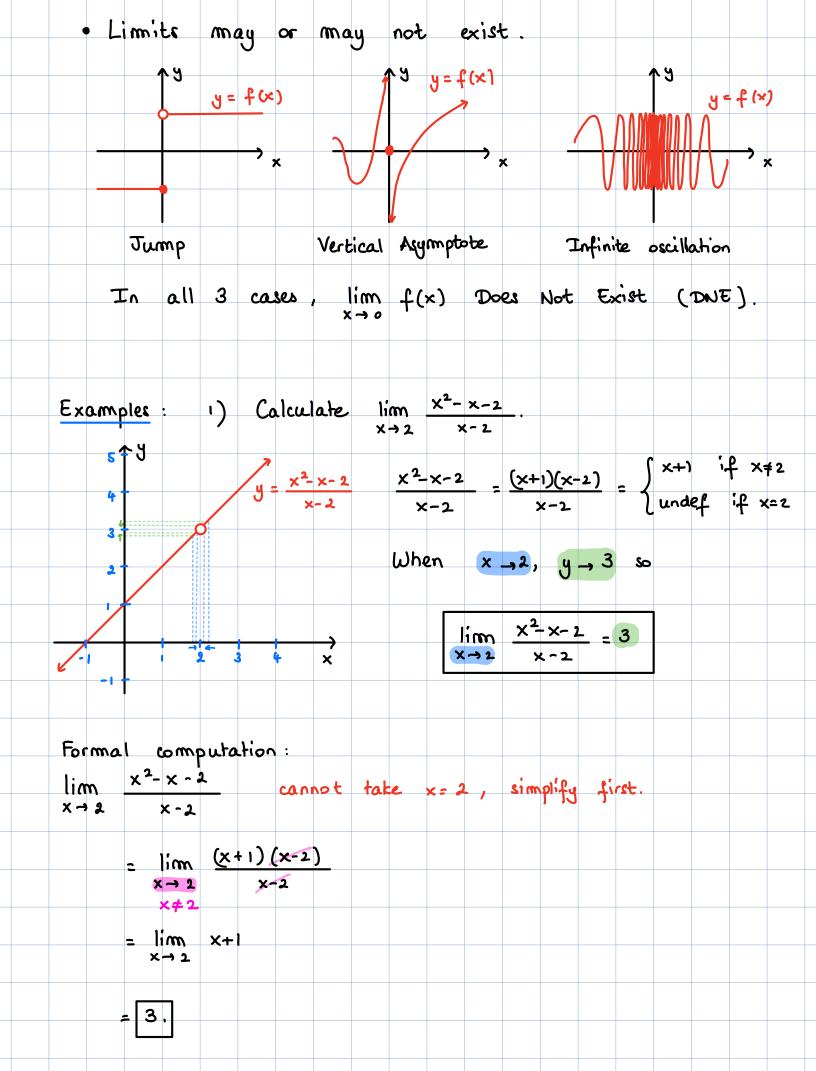
Motivation : average velocity ve instantaneous velocity

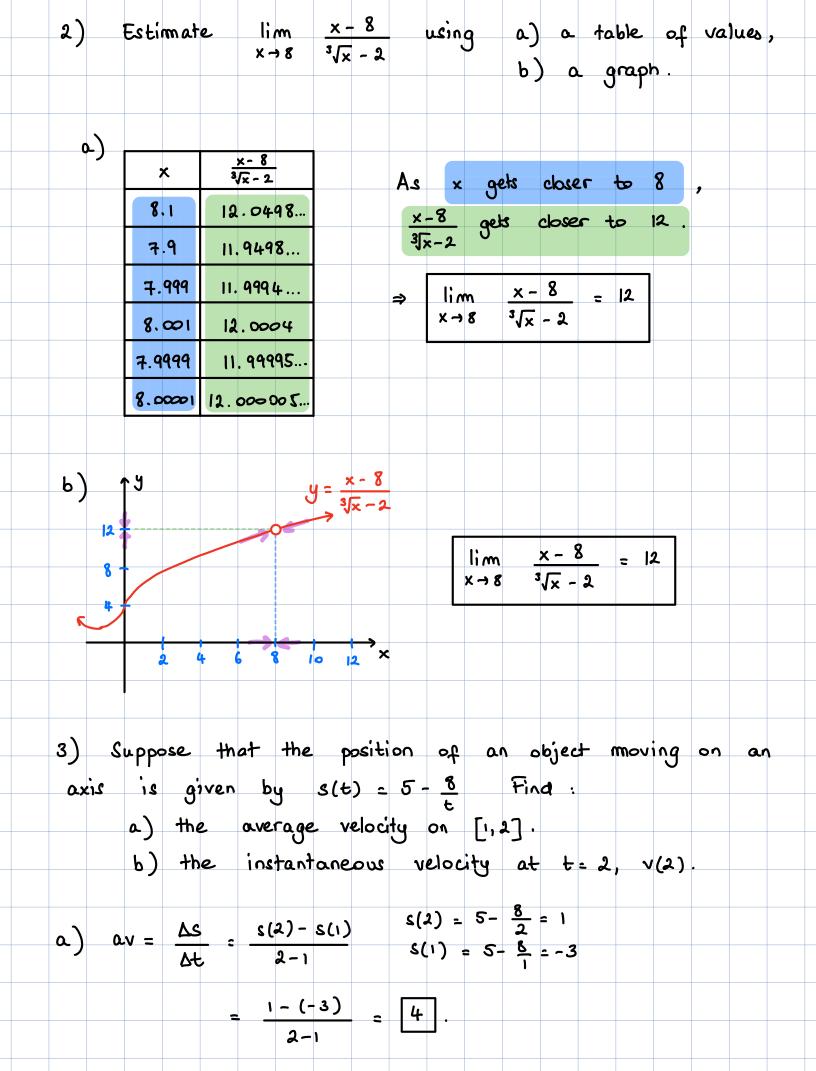
How to calculate the instantaneous velocity?
Let's do it with the example
$$s(t) = 7t^2$$
 at $t = 1$.

$$av = \frac{\Delta s}{\Delta t} = \frac{s(t_2) - s(t_1)}{t_2 - t_1}$$

$$= \frac{s(t_1 + h) - s(t_1)}{h}$$


For our example
$$s(t) = 7t^2$$


• on
$$[1, 1.1]$$
: $\Delta s = \frac{7 \cdot (1.1)^2 - 7 \cdot 1^2}{1 \cdot 1 - 1} = 14.7$
(h = 0.1) Δt $1 \cdot 1 - 1$ approximations
• on $[0.9, 1]$: $\Delta s = 7 \cdot 1^2 - 7 \cdot (0.9)^2 = 13.3$ (h = -0.1) Δt $1 - 0.9$


 $if t_2 = t_1 + h.$

Over smaller and smaller intervals, we get a better estimate of v(1).

Then, find what value the average velocity tends to
as the length of the interval
$$\Delta t = h$$
 approaches 0.
Call $av(h)$ the average velocity between $t = 1$ and
 $t = 1+h$. Explicitly:
 $av(h) = \Delta s = \frac{s(1+h)-s(1)}{h} = \frac{T(1+h)^2 + 1}{h}$.
Above, we computed $av(0,1) = 14.7$ and $av(-0,1) = 13.3$.
Let's look at a table of values to find the tendeng
of $av(h)$ as h gets closer to 0.
h $av(h)$ As h gets closer to 0.
h $av(h)$ As h gets closer to 14.
0.01 [4.07]
0.01 [4.07]
0.001 [4.07]
0.01 [3.3]
-0.01 [3.93]
-0.001 [3.943]
How start by simplifying the average rate of change
 $av(h)$ for $h \neq 0$, and then take the limit as
h approaches 0.
 $av(h) = \frac{s(1+h)-s(1)}{h} = \frac{T(1+h)^2}{h}$.
 $av(h) = \frac{s(1+h)-s(1)}{h} = \frac{T(1+h)^2}{h}$

b) To find
$$v(2)$$
 we first find and simplify the
average velocity $av(h)$ between $t \ge 2$ and $t \ge 2+h$, and
then we take the limit as $h \Rightarrow o$.

 $av(h) = \Delta s = s(2+h) - s(2) = (5 - \frac{8}{2+h}) - 1$
 $h = 4 - \frac{8}{2+h} = \frac{4(2+h) - s}{2} = \frac{8+4h-8}{h(2+h)} = \frac{4h}{h(2+h)}$
 $= \frac{4}{2+h}$ if $h \neq 0$.

So $v(2) = \lim_{h \to 0} av(h) = \lim_{h \to 0} \frac{4}{2+h} = \frac{4}{2+o} = 2$.

4) Find the instantaneous rate of change of
 $f(x) \ge \sqrt{x-3}$ at $x \in 7$.

First, we find and simplify the average rate of
change $arc(h)$ between $x \ge 7$ and $x = 7+h$.

 $are(h) = \Delta f = \frac{4(3+h) - f(7)}{h} = \sqrt{2+h-3} - \sqrt{3+3}$ cannot take $h < 0$.

 $are(h) = \Delta f = \frac{4(3+h) - f(7)}{h} = \sqrt{2+h-3} - \sqrt{3+3}$ cannot take $h < 0$.

 $are(h) = \Delta f = \frac{4(3+h) - f(7)}{h} = \frac{\sqrt{2+h-3} - \sqrt{3+3}}{h}$ cannot take $h < 0$.

instantaneous rate of change at
$$x = 7$$
:

$$\lim_{h \to 0} \operatorname{arc}(h) = \lim_{h \to 0} \frac{1}{\sqrt{4+n}+2} = \frac{1}{\sqrt{4+o}+2} = \frac{1}{4}$$

5) Find the instantaneous rate of change of
$$f(x) = \frac{6}{3x-4}$$
 at $x = 2$.

First, we find and simplify the average rate of change
$$arc(h)$$
 between $x=2$ and $x=2+h$.

$$arc(h) = \frac{\Delta f}{\Delta x} = \frac{f(2+h) - f(2)}{h} = \frac{\frac{6}{3(2+h) - 4} - 3}{\frac{6}{3(2+h) - 4} - 3} = \frac{\frac{6}{2+3h} - 3}{h}$$

$$= \frac{6 - 3(2+3h)}{h(2+3h)} = \frac{6 - 6 - 9h}{h(2+3h)} = \frac{-9h}{h(2+3h)} = \frac{-9}{2+3h}$$

Then, we take the limit as
$$h \rightarrow 0$$
 to find the instantaneous rate of change at $x=2$:

$$\lim_{h \to 0} \operatorname{arc}(h) = \lim_{h \to 0} \frac{-9}{2+3h} = \frac{-9}{2+3\cdot 0} = \frac{9}{2}$$