Rutgers University Math 151

Section 2.1: Introduction to Limits - Worksheet

- 1. Calculate the average rate of change the following functions on the given intervals.
 - (a) $f(x) = 2\ln(5x+1)$ on the interval [0,3].
 - (b) $f(x) = \sin(4x)$ on the interval $\left[\frac{\pi}{24}, \frac{\pi}{12}\right]$.
 - (c) $f(x) = \arctan(3x)$ on the interval $\left[-\frac{1}{3}, \frac{1}{3}\right]$.
- 2. The graph of the function y = f(x) is given below.

Evaluate f(a) and $\lim_{x\to a} f(x)$ for the following values of a, or say if the quantity does not exist.

(a)
$$a = -3$$
 (b) $a = -2$ (c) $a = 1$ (d) $a = 2$ (e) $a = 4$

3. The following table of values are given for the functions f(x) and g(x). Use these to estimate $\lim_{x\to 3} f(x)$ and $\lim_{x\to 3} g(x)$ or say if a limit does not exist.

x	2.9	3.01	2.999	3.0001	2.99999
f(x)	4.15	3.95	4.05	3.9993	4.0005
g(x)	7.98	1.001	7.997	1.0002	7.99992

- 4. Using a limit of average rates of change, find the instantaneous rate of change of the following functions at the given value of x.
 - (a) $f(x) = x^2 3x + 7$ at x = 0.

(b)
$$f(x) = \frac{x}{5-x}$$
 at $x = -1$.

(c) **[Advanced]**
$$f(x) = \frac{1}{\sqrt{2x+1}}$$
 at $x = 4$.

- 5. The position of an object moving along an axis is given by the function $s(t) = 6\sqrt{x+1}$.
 - (a) Find the average velocity of the object between t = 0 and t = 15.
 - (b) Find the position and instantaneous velocity of the object at t = 3.