Learning Goal	Homework Problems
2.2.1 Find the limits of a function and evaluate the function using a graph of the function.	$1-4,83,84$.
2.2.2 Understand and be able to explain concepts related to the existence of limits.	$5-10,78-82,85-90$.
2.2.3 Compute the limits of polynomial and rational functions. Find the limits of difference quotients in preparation for computing derivatives.	$5,6,11-42,67-70$.
2.2.4 Compute basic limits of trigonometric functions.	$43-50$.
2.2.5 Find limits using the rules of limits.	$51-56,79-82$.
2.2.6 Evaluate the limit of average rates of change.	$57-62$.
2.2.7 Solve applications of the Sandwich Theorem.	$63-66,78$.
2.2.8 Estimate limits using tables.	$67-76$.

Recall :
$\lim _{x \rightarrow a} f(x)=L$ means that $f(x)$ gets arbitrarily close to L when x gets close to a.

In this section, we are going to learn techniques to compute limits.
i) Graphically: $\lim _{x \rightarrow a} f(x)=L$ means that the y-values on the graph $y=f(x)$ approach L as the x-values approach $a, x \neq a$.

Example: use the graph to evaluate the following.

$$
\begin{array}{ll}
\lim _{x \rightarrow-4} f(x)=-1, & f(-4) \text { DNE. }
\end{array} \begin{cases}\lim _{x \rightarrow 1} f(x) \text { DNE, } f(1)=2 \\
\lim _{x \rightarrow-3} f(x)=-2, & f(-3)=-2 .\end{cases}
$$

ii) Substitution: for "common functions" on their domain

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Common functions: rational (e.g. $\frac{2 x^{2}+4}{x^{3}-8}$)
algebraic (e.g. $\sqrt[3]{\frac{1}{x}+2 x}$)
exponential (egg $7 e^{4 x}$)
logarithmic (e.g. $\log _{2}(3-5 x)$)
trigonometric (cos, sin, etc.)
inverse trigonometric (arcsin, arctan etc.)
and their combinations (algebraic and compositions).
Examples: 1) $\lim _{x \rightarrow 1} \frac{\ln \left(1+x e^{x^{2}-1}\right)}{2+\sin (\pi x)}=\frac{\ln \left(1+1 e^{1^{2}-1}\right)}{2+\sin (\pi)}=\frac{\ln (2)}{2}$.
2) $\lim _{x \rightarrow-3} \arctan (1+\ln (x+4))=\arctan (1+\ln (1))=\arctan (1)=\frac{\pi}{4}$.
iii) Algebra: if substitution gives $\frac{0}{0}$, need to use algebra to rewrite the expression before evaluating. A. $\frac{0}{0}$ does not necessarily mean the limit DNE.

Examples: 1) $\lim _{x \rightarrow 2} \frac{x-2}{\frac{1}{x}-\frac{1}{2}}$ substitution gives $\frac{0}{0}$: more work

$$
=\lim _{x \rightarrow 2} \frac{x-2}{\frac{2-x}{2 x}}=\lim _{\substack{x \rightarrow 2 \\ x \neq 2}}-(x-2) \frac{2 x}{2-x}=\lim _{x \rightarrow 2}-2 x=-4
$$

2) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x^{2}-1} \quad$ substitution gives $\frac{0}{0}$: more work needed.
$=\lim _{x \rightarrow 1} \frac{(a-b)(a+b)=a^{2}-b^{2}}{(x-1)(x+1)} \cdot \frac{\sqrt{x}-1}{\sqrt{x}+1}$ multiply top and bottom by conjugate

$$
=\lim _{x \rightarrow 1} \frac{\begin{array}{l}
a^{2}-b^{2} \\
x-1
\end{array}}{(x-1)(x+1)(\sqrt{x}+1)}=\lim _{x \rightarrow 1} \frac{1}{(x+1)(\sqrt{x}+1)}=\frac{1}{(1+1)(\sqrt{1}+1)}=\frac{1}{4} .
$$

3) $\lim _{x \rightarrow 3} \frac{x-3}{\sqrt{x^{2}+16}-5}$ substitution gives $\frac{0}{0}$: more work needed. $=\lim _{x \rightarrow 3} \frac{x-3}{\sqrt{x^{2}+16}-5} \cdot \frac{\sqrt{x^{2}+16}+5}{\sqrt{x^{2}+16}+5} \quad$ multiply top and bottom by conjugate $(a-b) \cdot(a+b)=a^{2}-b^{2}$

$$
=\lim _{x \rightarrow 3} \frac{(x-3)\left(\sqrt{x^{2}+16}+5\right)}{x^{2}+16-25}=\lim _{x \rightarrow 3} \frac{(x-3)\left(\sqrt{x^{2}+16}+5\right)}{x^{2}-9}
$$

$$
=\lim _{x \rightarrow 3} \frac{(x-3)\left(\sqrt{x^{2}+16}+5\right)}{(x-3)(x+3)}=\lim _{x \rightarrow 3} \frac{\sqrt{x^{2}+16}+5}{x+3}=\frac{\sqrt{3^{2}+16}+5}{3+3}=\frac{10}{6}=\frac{5}{3}
$$

iv) Limit laws: if $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow 0} g(x)=M$ then:

$$
\begin{array}{ll}
\lim _{x \rightarrow a} f(x)+g(x)=L+M & \lim _{x \rightarrow a} k f(x)=L \\
\lim _{x \rightarrow a} f(x)-g(x)=L-M & \lim _{x \rightarrow a} f(x)^{n}=L^{n} \\
\lim _{x \rightarrow a} f(x) g(x)=L M & \lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{L} \\
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M} \quad(M \neq 0) &
\end{array}
$$

Example if $\lim _{x \rightarrow 4} \frac{f(x)+7}{x}=6$, find $L=\lim _{x \rightarrow 4} f(x)$.

$$
\begin{aligned}
& \lim _{x \rightarrow 4} \frac{f(x)+7}{x}=\frac{\left(\lim _{x \rightarrow 4} f(x)\right)+\left(\lim _{x \rightarrow 4} 7\right)}{\lim _{x \rightarrow 4} x}=\frac{L+7}{4}=6 \text {, so } L+7=24 \\
& L=17
\end{aligned}
$$

v) Squeeze / Sandwich Theorem:

If $g(x) \leqslant f(x) \leqslant h(x)$ and $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)=L$,
then $\lim _{x \rightarrow a} f(x)=L$.

Examples: 1) Suppose that $1-\frac{x^{2}}{2} \leqslant f(x) \leqslant 1+\frac{x^{2}}{2}$.
Since $\lim _{x \rightarrow 0} 1-\frac{x^{2}}{2}=\lim _{x \rightarrow 0} 1+\frac{x^{2}}{2}=1$, we have $\lim _{x \rightarrow 0} f(x)=1$ by the Squeeze Theorem.
2) Find $\lim _{x \rightarrow 0} 1 x \left\lvert\, \sin \left(\frac{1}{x}\right)\right.$.

Since $-1 \leqslant \sin \left(\frac{1}{x}\right) \leqslant 1$, we have $-|x| \leqslant|x| \sin \left(\frac{1}{x}\right) \leqslant|x|$.
Also, $\quad \lim _{x \rightarrow 0}-|x|=\lim _{x \rightarrow 0}|x|=0$.

So by the Squeeze Theorem, $\lim _{x \rightarrow 0}|x| \sin \left(\frac{1}{x}\right)=0$

vi) Special trig limits

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1=\lim _{x \rightarrow 0} \frac{x}{\sin (x)}
$$

$$
\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}=\frac{1}{2}
$$

Examples: evaluate

1) $\lim _{x \rightarrow 0} \frac{5 x}{\sin (2 x)}$,
2) $\lim _{x \rightarrow 0} \frac{\cos (3 x)-1}{x}$
and 3) $\lim _{x \rightarrow 0} \frac{\tan (7 x)^{2}}{x \sin (3 x)}$.
3) $\lim _{x \rightarrow 0} \frac{5 x}{\sin (2 x)} \cdot \frac{2 x}{2 x}$ multiply by $\frac{2 x}{2 x}$ to get $\frac{2 x}{\sin (2 x)}$.

$$
=\lim _{x \rightarrow 0} \frac{5 x}{2 x} \cdot \frac{2 x}{\sin (2 x)}=\underbrace{\left(\lim _{x \rightarrow 0} \frac{5}{2}\right)}_{\frac{5}{2}} \underbrace{\left(\lim _{x \rightarrow 0} \frac{2 x}{\sin (2 x)}\right)}_{=1}=\frac{5}{2}
$$

2) $\lim _{x \rightarrow 0} \frac{\cos (3 x)-1}{x} \cdot \frac{(3 x)^{2}}{(3 x)^{2}}$ multiply by $\frac{(3 x)^{2}}{(3 x)^{2}}$ to get $\frac{\cos (3 x)-1}{(3 x)^{2}}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\cos (3 x)-1}{(3 x)^{2}} \cdot \frac{(3 x)^{2}}{x}=\left(\lim _{x \rightarrow 0} \frac{\cos (3 x)-1}{(3 x)^{2}}\right)\left(\lim _{x \rightarrow 0} \frac{9 x^{2}}{x}\right) \\
& =(-\underbrace{\lim _{x \rightarrow 0} \frac{1-\cos (3 x)}{(3 x)^{2}}}_{\frac{1}{2}})(\underbrace{\left(\lim _{x \rightarrow 0} 9 x\right.}_{0})=-\frac{1}{2} \cdot 0=0 .
\end{aligned}
$$

3)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\tan (7 x)^{2}}{x \sin (3 x)} \cdot \frac{(7 x)^{2}}{(7 x)^{2}} \cdot \frac{3 x}{3 x} \\
= & \lim _{x \rightarrow 0} \frac{1}{\cos (7 x)^{2}} \cdot \frac{\sin (7 x)^{2}}{(7 x)^{2}} \cdot \frac{3 x}{\sin (3 x)} \cdot \frac{(7 x)^{2}}{x(3 x)} \cdot \\
= & (\underbrace{\lim _{x \rightarrow 0} \frac{1}{\cos (7 x)^{2}}}_{\frac{1}{\operatorname{los}(0)}=1})(\underbrace{\lim _{x \rightarrow 0} \frac{\sin (7 x)}{7 x}}_{1^{2}=1})^{2}(\underbrace{\left.\lim _{x \rightarrow 0} \frac{3 x}{\sin (3 x)}\right)}_{1}(\underbrace{\lim _{x \rightarrow 0} \frac{49 x^{2}}{3 x^{2}}}_{\frac{49}{3}}) \\
= & \frac{49}{3} .
\end{aligned}
$$

Practice problems: evaluate the following limits.

1) $\lim _{x \rightarrow 5} \frac{\sqrt{3 x+1}-4}{\sqrt{x+4}-3}$
2) $\lim _{h \rightarrow 0} \frac{h}{\frac{1}{\sqrt{4+h}}-\frac{1}{2}}$
3) $\lim _{x \rightarrow 0} \frac{\tan (4 x) x}{\sin (5 x)^{2}}$
4) $\lim _{x \rightarrow-1} \frac{(x+2)^{-1}+x^{-1}}{x^{2}+x}$
5) $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)$.
6) $\lim _{x \rightarrow 0} \frac{\sec (7 x)-1}{x^{2}}$.

Solutions: 1) $\lim _{x \rightarrow 5} \frac{\sqrt{3 x+1}-4}{\sqrt{x+4}-3} \quad$ substitution gives $\frac{\sqrt{16}-4}{\sqrt{9-3}}=\frac{0}{0}$: more
$=\lim _{x \rightarrow 5} \frac{\sqrt{3 x+1}-4}{\sqrt{x+4}-3} \cdot \frac{(\sqrt{3 x+1}+4)(\sqrt{x+4}+3)}{(\sqrt{3 x+1}+4)(\sqrt{x+4}+3)}$ multiply top and bottom

$$
\begin{aligned}
& =\lim _{x \rightarrow 5} \frac{(3 x+1-16)(\sqrt{x+4}+3)}{(x+4-9)(\sqrt{3 x+1}+4)}=\lim _{x \rightarrow 5} \frac{(3 x-15)(\sqrt{x+4}+3)}{(x-5)(\sqrt{3 x+1}+4)} \\
& =\lim _{x \rightarrow 5} \frac{3(x-5)(\sqrt{x+4}+3)}{(x-5)(\sqrt{3 x+1}+4)}=\lim _{x \rightarrow 5} \frac{3(\sqrt{x+4}+3)}{\sqrt{3 x+1}+4}=\frac{3 \cdot 6}{8}=\frac{9}{4} .
\end{aligned}
$$

2) $\lim _{x \rightarrow-1} \frac{(x+2)^{-1}+x^{-1}}{x^{2}+x}$ substitution gives $\frac{0}{0}$: more work needed.

$$
\begin{aligned}
& =\lim _{x \rightarrow-1} \frac{\frac{1}{x+2}+\frac{1}{x}}{x(x+1)}=\lim _{x \rightarrow-1} \frac{\frac{x+x+2}{(x+2) x}}{x(x+1)}=\lim _{x \rightarrow-1} \frac{2 x+2}{x^{2}(x+1)(x+2)} \\
& =\lim _{x \rightarrow-1} \frac{2}{x^{2}(x+2)}=\frac{2}{(-1)^{2}(-1+2)}=2 .
\end{aligned}
$$

$$
\text { 3) } \begin{aligned}
& \lim _{h \rightarrow 0} \frac{h}{\frac{1}{\sqrt{4+h}}-\frac{1}{2}}=\lim _{h \rightarrow 0} \frac{h}{\frac{2-\sqrt{4+h}}{2 \sqrt{4+h}}}=\lim _{h \rightarrow 0} \frac{2 h \sqrt{4+h}}{2-\sqrt{4+h}} \cdot \frac{2+\sqrt{4+h}}{2+\sqrt{4+h}} \\
= & \lim _{h \rightarrow 0} \frac{2 h \sqrt{4+h}(2+\sqrt{4+h})}{4-(4+h)}=\lim _{h \rightarrow 0} \frac{2 h \sqrt{4+h}(2+\sqrt{4+h})}{-h} \\
= & \lim _{h \rightarrow 0}-2 \sqrt{4+h}(2+\sqrt{4+h})=-2 \sqrt{4+0}(2+\sqrt{4+0})=-16
\end{aligned}
$$

4) $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)$.

Since $-1 \leqslant \cos \left(\frac{1}{x}\right) \leqslant 1$, we have $-x^{2} \leqslant x^{2} \cos \left(\frac{1}{x}\right) \leqslant x^{2}$.
Also $\lim _{x \rightarrow 0}\left(-x^{2}\right)=\lim _{x \rightarrow 0} x^{2}=0$.
Sn by the Squeeze Theorem, $\quad \lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)=0$.

$$
\text { 5) } \begin{aligned}
& \lim _{x \rightarrow 0} \frac{\tan (4 x) x}{\sin (5 x)^{2}}=\lim _{x \rightarrow 0} \frac{\sin (4 x) x}{\cos (4 x) \sin (5 x) \sin (5 x)} \cdot \frac{4 x}{4 x} \cdot \frac{5 x}{5 x} \cdot \frac{5 x}{5 x} \\
&= \lim _{x \rightarrow 0} \frac{1}{\cos (4 x)} \cdot \frac{\sin (4 x)}{4 x} \cdot \frac{5 x}{\sin (5 x)} \cdot \frac{5 x}{\sin (5 x)} \cdot \frac{x \cdot 4 x}{5 x \cdot 5 x} \\
&=\left(\lim _{x \rightarrow 0} \frac{1}{\cos (4 x)}\right)\left(\lim _{x \rightarrow 0} \frac{\sin (4 x)}{4 x}\right)(\underbrace{\left.\lim _{x \rightarrow 0} \frac{5 x}{\sin (5 x)}\right)}_{x \rightarrow 0}(\underbrace{\left.\lim _{x \rightarrow 0} \frac{5 x}{\sin (5 x)}\right)\left(\lim _{x \rightarrow 0} \frac{4}{25}\right)} \\
&=\frac{1}{\cos (0)} \cdot 1.1 \cdot 1 \cdot \frac{4}{25}=\frac{4}{25} .
\end{aligned}
$$

6)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sec (7 x)-1}{x^{2}}=\lim _{x \rightarrow 0} \frac{\frac{1}{\cos (7 x)}-1}{x^{2}}=\lim _{x \rightarrow 0} \frac{1-\cos (7 x)}{x^{2} \cos (7 x)} \cdot \frac{(7 x)^{2}}{(7 x)^{2}} \\
& =\lim _{x \rightarrow 0} \frac{1-\cos (7 x)}{(7 x)^{2}} \cdot \frac{49 x^{2}}{x^{2} \cos (7 x)} \\
& =\left(\lim _{x \rightarrow 0} \frac{1-\cos (7 x)}{(7 x)^{2}}\right)\left(\lim _{x \rightarrow 0} \frac{49}{\frac{1}{2}}\right)=\frac{1}{2} \cdot \frac{49}{\cos (7 x)}=\frac{49}{2} .
\end{aligned}
$$

