Learning Goals

Lear	ning G	Foal										Hom	ieworl	k Prob	lems		
		the lin e func	nits of	a func	a	1-4,		 									
 2.2.2	Unde	rstand	and b	e able		5-10, 78-82, 85-90.					 						
		f limit oute th	s. e limi	ts of p	nd	5, 6, 11-42, 67-70.											
the li		f diffe				prepa											
2.2.4 Compute basic limits of trigonometric functions.												43-50.					
2.2.5 Find limits using the rules of limits.												51-56, 79-82.					
						rates c		nge.				57-62.					
2.2.7	Solve	appli	cation	s of th		63-66, 78.											
			nits us									67-7					
																	 _

Recall :

 $\lim_{x \to \infty} f(x) = L$ means that f(x) gets arbitrarily close X -> a to L when x gets close to a.

In this section, we are going to learn techniques to compute limits.

i) Graphically: $\lim_{x \to a} f(x) = L$ means that the y-values on the graph y = f(x) approach L as the x-values approach a, $x \neq a$.

-2-

 $\lim_{x \to -4} f(x) = -1, \quad f(-4) \quad DNE. \quad \lim_{x \to -4} f(x) \quad DNE, \quad f(1) = 2$

 $\lim_{x \to -3} f(x) = -2, \quad f(-3) = -2 \quad \lim_{x \to 2} f(x) \quad DNE, \quad f(2) \quad DNE$

 $\lim_{x \to -1} f(x) \quad DNE, \quad f(-1) = 2 \qquad \lim_{x \to 3} f(x) = -1, \quad f(3) = 2.$

ii) Substitution: for "common functions" on their domain $\lim_{x\to a} f(x) = f(a).$ Common functions: rational (e.g. $\frac{2x^2+4}{x^3-8}$) algebraic (e.g. ³/<u>+</u>+2×) exponential (e.q 7e4x) logarithmic (e.g. log₂ (3-5x)) trigonometric (cos, sin, etc.) inverse trigonometric (arcsin, arctan etc.) and their combinations (algebraic and compositions). Examples: 1) $\lim_{x \to 1} \frac{\ln(1 + xe^{x^{2}})}{2 + \sin(\pi x)} = \frac{\ln(1 + 1e^{1^{2}})}{2 + \sin(\pi)} = \frac{\ln(2)}{2}$ 2) $\lim_{x \to -3} \arctan(1 + \ln(x + 4)) = \arctan(1 + \ln(1)) = \arctan(1) = \frac{\pi}{4}$ iii) Algebra: if substitution gives $\frac{\circ}{\circ}$, need to use algebra to rewrite the expression before evaluating. does not necessarily mean the limit DNE. Examples: 1) $\lim_{x \to 2} \frac{x-2}{\frac{1}{2}-\frac{1}{2}}$ substitution gives $\frac{9}{2}$; more work needed. $= \lim_{\substack{x \to 2 \\ x \to 2}} \frac{x-2}{\frac{2-x}{2x}} = \lim_{\substack{x \to 2 \\ x \neq 2}} \frac{2x}{\frac{2-x}{2x}} = \lim_{\substack{x \to 2 \\ x \neq 2}} -2x = -4$

2)
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x^{2} - 1}$$
 substitution gives $\frac{0}{2}$: more work needed.

$$= \lim_{x \to 1} \frac{\sqrt{x} - 1}{\sqrt{x} + 1}$$
 multiply top and bottom by conjugate

$$= \lim_{x \to 1} \frac{\sqrt{x} - 1}{(x - 1)(x + 1)\sqrt{x} + 1}$$

$$= \lim_{x \to 1} \frac{1}{(x - 1)(x + 1)\sqrt{x} + 1}$$

$$= \lim_{x \to 1} \frac{1}{(x - 1)(x + 1)(\sqrt{x} + 1)}$$

$$= \lim_{x \to 1} \frac{1}{(x - 1)(x + 1)(\sqrt{x} + 1)}$$

$$= \lim_{x \to 1} \frac{1}{(x - 1)(x + 1)(\sqrt{x} + 1)}$$

$$= \lim_{x \to 1} \frac{1}{(x - 1)(x + 1)(\sqrt{x} + 1)}$$

$$= \lim_{x \to 3} \frac{1}{\sqrt{x^{2} + 1}}$$

$$= \lim_{x \to 3} \frac{x - 3}{\sqrt{x^{2} + 1}}$$

$$= \lim_{x \to 3} \frac{1}{\sqrt{x^{2} + 1}}$$

$$= \lim_{x \to 3} \frac{1}{\sqrt{x^{$$

+

+

_

_

+

+

_

+

_

Example if
$$\lim_{x\to 0} \frac{f(x)+7}{x} = 6$$
, find $L = \lim_{x\to 0} f(x)$.
 $\lim_{x\to 0} \frac{f(x)+7}{x} = (\lim_{x\to 0} f(x)) + (\lim_{x\to 0} 7) = \frac{L+7}{4} = 6$, so $L+7=24$
 $\lim_{x\to 0} \frac{f(x)+7}{x} = \lim_{x\to 0} \frac{(\lim_{x\to 0} f(x)) + (\lim_{x\to 0} 7)}{(\lim_{x\to 0} f(x))} = \lim_{x\to 0} \frac{L+7}{4} = 24$
 $\sum_{x\to 0} \frac{1}{x} = \lim_{x\to 0} \frac{1}{x} = \lim_{x\to 0} \frac{1}{x} = 1$
 $x + 0$ Squeeze / Sandwich Theorem :
 $y = g(x)$ Theorem $\lim_{x\to 0} \frac{1}{g(x)} \le f(x) \le h(x)$
 $g = g(x)$ Theorem $\frac{1}{x} = \lim_{x\to 0} \frac{1}{g(x)} = L$.
Examples : 1) Suppose that $1 - \frac{x^2}{2} \le f(x) \le 1 + \frac{x^2}{2}$.
Since $\lim_{x\to 0} 1 - \frac{x^4}{2} = \lim_{x\to 0} 1 + \frac{x^4}{2} = 1$, we have $\lim_{x\to 0} \frac{1}{g(x) - 1}$ by
The Squeeze Theorem.
2) Find $\lim_{x\to 0} 1 \times |x| = 0$.
So by the Squeeze Theorem, $\lim_{x\to 0} |x| = 0$.
 $\lim_{x\to 0} \frac{1}{x} = \lim_{x\to 0} |x| = 0$.
 $\lim_{x\to 0} \frac{1}{x} = \lim_{x\to 0} \frac{1}{x} = 1$.

3)
$$\lim_{X \to 0} \frac{\tan (\pi_X)^2}{x \sin (3x)} \frac{(\pi_X)^2}{(\pi_X)^4} \frac{3x}{3x}$$

$$= \lim_{X \to 0} \frac{1}{\cos(\pi_X)^2} \frac{\sin(\pi_X)^2}{(\pi_X)^4} \frac{3x}{\sin(3x)} \frac{(\pi_X)^3}{x(3x)}$$

$$= \left(\lim_{X \to 0} \frac{1}{\cos(\pi_X)^2}\right) \left(\lim_{X \to 0} \frac{\sin(\pi_X)}{\pi_X}\right)^2 \left(\lim_{X \to 0} \frac{3x}{\sin(3x)}\right) \left(\lim_{X \to 0} \frac{4\pi_X^2}{3x^4}\right)$$

$$= \left(\lim_{X \to 0} \frac{1}{\cos(\pi_X)^2}\right) \left(\lim_{X \to 0} \frac{\sin(\pi_X)}{\pi_X}\right)^2 \left(\lim_{X \to 0} \frac{3x}{\sin(3x)}\right) \left(\lim_{X \to 0} \frac{4\pi_X^2}{3x^4}\right)$$

$$= \left[\frac{4\pi}{3}\right]$$

$$= \left[\frac{4\pi}{3}\right]$$

$$= \frac{4\pi}{(\pi_X)^2} \frac{\sqrt{3x+1} - 4}{\sqrt{x+4} - 3}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} - 4}{\sqrt{x+4} - 3}$$

$$= 1 \lim_{X \to 0} \frac{1}{\sqrt{3x+1} - \frac{1}{2}}$$

$$= 1 \lim_{X \to 0} \frac{1}{\sin(5x)^2}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} - \frac{1}{2}}{\sqrt{x+4} - 3}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} - 4}{\sqrt{x+4} - 3}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} - 4}{\sin(5x)^2}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} - 4}{\sqrt{x+4} - 3}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} - 4}{\sqrt{x+4} - 3}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} - 4}{\sqrt{x+4} - 3}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} - 4}{\sqrt{x+4} - 3}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} - 4}{\sqrt{x+4} - 3}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} - 4}{\sqrt{x+4} - 3}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} - 4}{\sqrt{x+4} - 3}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} - 4}{\sqrt{x+4} - 3}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} - 4}{\sqrt{x+4} - 3}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} - 4}{\sqrt{x+4} - 3}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} - 4}{\sqrt{x+4} - 3}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} - 4}{\sqrt{x+4} - 3}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} - 4}{\sqrt{x+4} - 3}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} + 4}{\sqrt{x+4} + 3}$$

$$= 1 \lim_{X \to 0} \frac{\sqrt{3x+1} + 4}{\sqrt{x+4} + 3}$$

$$= 1 \lim_{X \to 0} \frac{3(x+1 - k)(\sqrt{x+4} + 3)}{(x+5)(\sqrt{x+4} + 4)}$$

$$= 1 \lim_{X \to 0} \frac{3(x+5)(\sqrt{x+4} + 3)}{(x+5)(\sqrt{x+4} + 4)}$$

$$= 1 \lim_{X \to 0} \frac{3(x+5)(\sqrt{x+4} + 3)}{(x+5)(\sqrt{x+4} + 4)}$$

$$= 1 \lim_{X \to 0} \frac{3(x+5)(\sqrt{x+4} + 3)}{(x+5)(\sqrt{x+4} + 4)}$$

$$= 1 \lim_{X \to 0} \frac{3(x+5)(\sqrt{x+4} + 3)}{(x+5)(\sqrt{x+4} + 4)}$$

$$= 1 \lim_{X \to 0} \frac{3(x+5)(\sqrt{x+4} + 4)}{(x+5)(\sqrt{x+4} + 4)}$$

$$= 1 \lim_{X \to 0} \frac{3(x+5)(\sqrt{x+4} + 4)}{(x+5)(\sqrt{x+4} + 4)}$$

$$= 1 \lim_{X \to 0} \frac{3(x+5)(\sqrt{x+4} + 4)}{(x+5)(\sqrt{x+4} + 4)}$$

$$= 1 \lim_{X \to 0} \frac{3(x+5)(\sqrt{x+4} + 4)}{(x+5)(\sqrt{x+4} + 4)}$$

$$= 1 \lim_{X \to 0} \frac{3(x+5)(\sqrt{x+4} + 4)}{(x+5)(\sqrt{x+4} + 4)}$$

$$= 1 \lim_{X \to 0} \frac{3(x+5)(\sqrt{x+4} + 4)}{(x+5)(\sqrt{x+4} + 4)}$$

$$= 1 \lim_{X \to 0} \frac{3(x+5)(\sqrt{x+4} + 4)}{(x+5)(\sqrt{x+4} + 4$$

+

_

_

+

_

6)
$$\lim_{X \to 0} \frac{\sec(7x) - 1}{x^{2}} = \lim_{X \to 0} \frac{1}{x^{2}(7x)^{2}} = \lim_{X \to 0} \frac{1 - \cos(7x)}{x^{2}\cos(7x)} \frac{(7x)^{2}}{(7x)^{2}}$$

$$= \lim_{X \to 0} \frac{1 - \cos(7x)}{(7x)^{2}} \frac{49x^{2}}{x^{2}\cos(7x)}$$

$$= \left(\lim_{X \to 0} \frac{1 - \cos(7x)}{(7x)^{2}}\right) \left(\lim_{X \to 0} \frac{49}{\cos(7x)}\right) = \frac{1}{2} \cdot \frac{49}{\cos(6)} = \frac{49}{2} \cdot \frac{1}{2} \cdot \frac{1}{$$