Learning Goal	Homework Problems
2.4.1 Use graphs of functions to find one-sided limits.	$1-10,21,22$.
2.4.2 Compute one-sided limits algebraically.	$11-20$.
2.4.3 Find the limits of trigonometric functions using the limit of $\sin \theta / \theta$.	$23-46$.
2.4.4 Understand the relationship between one-sided and two-sided limits. Answer conceptual question about one-sided limits.	$47-50$.

One-sided limits: in the definition of $\lim _{x \rightarrow a} f(x), x$ is allowed to approach a on both sides (left and right). We can look at limits when x approaches a from one side only.

Limit from the right: $\lim _{x \rightarrow a^{+}} f(x) \quad x$ goes to a and $x>a$.
$\lim _{x \rightarrow a^{+}} f(x)=L$ means $f(x)$ gets arbitrarily close to L when x approaches a with $x>a$

Limit from the left: $\lim _{x \rightarrow a^{-}} f(x) \quad x$ goes to a and $x<a$.
$\lim _{x \rightarrow a^{-}} f(x)=L$ means $f(x)$ gets arbitrarily close to L when x approaches a with $x<a$

Relationship between one-sided and two-sided limits:

$$
\lim _{x \rightarrow a} f(x)=L \Leftrightarrow\left(\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=L\right)
$$

More explicitly, this means that:

- If left and right limits are different, the two-sided limit does not exist (DNE).
- If left and right limits are equal, the two-sided limit exists and is equal to both one-sided limits.

Examples: 1) Use the graph of f below to find $\lim _{x \rightarrow a^{-}} f(x)$, $\lim _{x \rightarrow a^{+}} f(x), \lim _{x \rightarrow a} f(x)$ and $f(a)$ for $a=-3,-2,1,2,4$.

a	$\lim _{x \rightarrow a^{-}} f(x)$	$\lim _{x \rightarrow a^{+}} f(x)$	$\lim _{x \rightarrow a} f(x)$	$f(a)$
-3	DUE	1	DUE	3
-2	2	2	2	2
1	3	2	NE	DUE
2	-1	-1	-1	0
4	-2	1	DUE	-2

2) Calculate $\lim _{x \rightarrow 7} \frac{|x-7|}{x^{2}-49}$ or explain why it does not exist.

Recall that $|x-7|= \begin{cases}x-7 & \text { if } \\ x>7 \\ -(x-7) & \text { if } x<7\end{cases}$
Since we have a different expression to the left and right of 7, we use one-sided limits.

- Right limit:

$$
\lim _{\substack{x \rightarrow 7^{+} \\ x \rightarrow 7}} \frac{|x-7|}{x^{2}-49}=\lim _{x \rightarrow 7^{+}} \frac{x-7}{(x-7)(x+7)}=\lim _{x \rightarrow 7^{+}} \frac{1}{x+7}=\frac{1}{7+7}=\frac{1}{14} .
$$

- Left limit

$$
\begin{aligned}
& \lim _{x \rightarrow 7^{-}} \frac{|x-7|}{x^{2}-49}=\lim _{x \rightarrow 7^{-}} \frac{-(x-7)}{(x-7)(x+7)}=\lim _{x \rightarrow 7^{-}} \frac{-1}{x+7}=\frac{-1}{7+7}=-\frac{1}{14} . \\
& \text { so }|x-7|=-(x-7)
\end{aligned}
$$

Since $\lim _{x \rightarrow 7^{-}} \frac{|x-7|}{x^{2}-49} \neq \lim _{x \rightarrow 7^{+}} \frac{|x-7|}{x^{2}-49}, \lim _{x \rightarrow 7} \frac{|x-7|}{x^{2}-49}$ DUE

3) For $f(x)=\left\{\begin{array}{cl}\frac{\sin (6 x)}{x} & x<0 \\ -2 & x=0 \\ \frac{x}{\sqrt{x+9}-3} & x>0\end{array}\right.$

Calculate $\lim _{x \rightarrow 0} f(x)$ or explain why it does not exist.

Since we have a different expression to the left and right of 0 , we use one-sided limits.

- Right limit :

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{x}{\sqrt{x+9}-3} \cdot \frac{\sqrt{x+9}+3}{\sqrt{x+9}+3}=\lim _{x \rightarrow 0^{+}} \frac{x(\sqrt{x+9}+3)}{x+9-9} \\
= & \lim _{x \rightarrow 0^{+}} \frac{x(\sqrt{x+9}+3)}{x}=\lim _{x \rightarrow 0^{+}}(\sqrt{x+9}+3)=\sqrt{9}+3=6 .
\end{aligned}
$$

- Left limit

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{\sin (6 x)}{x} \cdot \frac{6 x}{6 x}=\lim _{x \rightarrow 0^{-}} \frac{\sin (6 x)}{6 x} \cdot \frac{6 x}{x} \\
= & (\underbrace{\left(\lim _{x \rightarrow 0^{-}} \frac{\sin (6 x)}{6 x}\right.}_{=1})(\underbrace{\left.\lim _{x \rightarrow 0^{-}} 6\right)}_{=6}=6 .
\end{aligned}
$$

Since $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=6, \quad \lim _{x \rightarrow 0} f(x)=6$.

4) Find the values of the constant a for which the function

$$
f(x)=\left\{\begin{array}{ll}
\cos (\pi x)+x & x<2 \\
-1 \\
a x+11 & x=2 \\
x>2
\end{array} \text { has a limit at } 2\right.
$$

We need to ensure that $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$.

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \cos (\pi x)+x=\cos (2 \pi)+2=3 \\
& \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} a x+11=2 a+11
\end{aligned}
$$

So we need $2 a+11=3 \Rightarrow 2 a=-8$

$$
a=-4
$$

5) Evaluate $\lim _{x \rightarrow 0} \frac{\sin \left(3 x^{2}\right)}{|x|}$ or explain why it does not exist.

- Right limit :

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{\sin \left(3 x^{2}\right)}{|x|}=\lim _{x \rightarrow 0^{+}} \frac{\sin \left(3 x^{2}\right)}{x} \cdot \frac{3 x^{2}}{3 x^{2}}=\lim _{x \rightarrow 0^{+}} \frac{\sin \left(3 x^{2}\right)}{3 x^{2}} \cdot \frac{3 x^{2}}{x} \\
& =(\underbrace{\lim _{x \rightarrow 0^{+}} \frac{\sin \left(3 x^{2}\right)}{3 x^{2}}}_{1})(\underbrace{\lim _{x \rightarrow 0^{+}} 3 x}_{0})=1 \cdot 0=0
\end{aligned}
$$

- Left limit :

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} & \frac{\sin \left(3 x^{2}\right)}{|x|}=\lim _{x \rightarrow 0^{-}} \frac{\sin \left(3 x^{2}\right)}{-x} \cdot \frac{3 x^{2}}{3 x^{2}}=\lim _{x \rightarrow 0^{-}} \frac{\sin \left(3 x^{2}\right)}{3 x^{2}} \cdot \frac{3 x^{2}}{-x} \\
& x<0 \text { so }|x|=-x \\
= & \underbrace{\lim _{x \rightarrow 0^{-}} \frac{\sin \left(3 x^{2}\right)}{3 x^{2}}}_{1})(\underbrace{\lim _{x \rightarrow 0^{-}}-3 x}_{0})=1 \cdot 0=0
\end{aligned}
$$

Since $\lim _{x \rightarrow 0^{+}} \frac{\sin \left(3 x^{2}\right)}{|x|}=\lim _{x \rightarrow 0^{+}} \frac{\sin \left(3 x^{2}\right)}{|x|}=0, \lim _{x \rightarrow 0} \frac{\sin \left(3 x^{2}\right)}{|x|}=0$
6) For $f(x)=\left\{\begin{array}{cl}\frac{2 x+6}{3 x^{-1}+1} & x<-3 \\ -x+k & -3<x \leqslant 1 \\ 4 k \arctan (x) & x>1\end{array}\right.$
find the values of k for which f has a limit at a) $x=-3$ and $b) x=1$.
a)

$$
\begin{aligned}
& \lim _{x \rightarrow-3^{-}} f(x)=\lim _{x \rightarrow-3^{-}} \frac{2 x+6}{3 x-1+1}=\lim _{x \rightarrow-3^{-}} \frac{2(x+3)}{\frac{3}{x}+1}=\lim _{x \rightarrow-3^{-}} \frac{2 x(x+3)}{3+x}=-6 \\
& \lim _{x \rightarrow-3^{+}} f(x)=\lim _{x \rightarrow-3^{+}}-x+k=3+k .
\end{aligned}
$$

We want $3+k=-6 \Rightarrow k=-9$
b)

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}-x+k=-1+k \\
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 4 k \arctan (x)=4 \operatorname{karctan}(1)=4 \frac{k \pi}{4}=k \pi
\end{aligned}
$$

We want $-1+k=k \pi \Rightarrow k(\pi-1)=-1$

$$
k=-\frac{1}{\pi-1}
$$

