Rutgers University
Math 151

Section 2.4: One-Sided Limits - Worksheet Solutions

1. Evaluate the following limits. If a limit does not exist, explain why.
(a) $\lim _{x \rightarrow 3^{-}} \frac{x^{2}-4 x+3}{|x-3|}$.

Solution. When $x \rightarrow 3^{-}$, we have $x<3$, so $x-3<0$ and $|x-3|=-(x-3)$. So

$$
\begin{aligned}
\lim _{x \rightarrow 3^{-}} \frac{x^{2}-4 x+3}{|x-3|} & =\lim _{x \rightarrow 3^{-}} \frac{(x-3)(x-1)}{-(x-3)} \\
& =\lim _{x \rightarrow 3^{-}}-(x-1) \\
& =-(3-1) \\
& =-2 .
\end{aligned}
$$

(b) $\lim _{x \rightarrow 3} \frac{x^{2}-4 x+3}{|x-3|}$.

Solution. We have already computed the left limit in the previous question. Let us compute the right limit. This time, when $x \rightarrow 3^{+}$, we have $x>3$, so $x-3>0$ and $|x-3|=x-3$. It follows that

$$
\begin{aligned}
\lim _{x \rightarrow 3^{+}} \frac{x^{2}-4 x+3}{|x-3|} & =\lim _{x \rightarrow 3^{+}} \frac{(x-3)(x-1)}{x-3} \\
& =\lim _{x \rightarrow 3^{+}}(x-1) \\
& =(3-1) \\
& =2
\end{aligned}
$$

Since $\lim _{x \rightarrow 3^{-}} \frac{x^{2}-4 x+3}{|x-3|} \neq \lim _{x \rightarrow 3^{+}} \frac{x^{2}-4 x+3}{|x-3|}$, we conclude that $\lim _{x \rightarrow 3} \frac{x^{2}-4 x+3}{|x-3|}$ does not exist .
(c) $\lim _{h \rightarrow 0^{-}} \frac{1-(1-|h|)^{3}}{h}$.

Solution. When $h \rightarrow 0^{-}$, we have $h<0$, so $|h|=-h$. Therefore

$$
\begin{aligned}
\lim _{h \rightarrow 0^{-}} \frac{1-(1-|h|)^{3}}{h} & =\lim _{h \rightarrow 0^{-}} \frac{1-(1+h)^{3}}{h} \\
& =\lim _{h \rightarrow 0^{-}} \frac{1-\left(1+3 h+3 h^{2}+h^{3}\right)}{h} \\
& =\lim _{h \rightarrow 0^{-}} \frac{-3 h-3 h^{2}-h^{3}}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0^{-}}-3-3 h-h^{2} \\
& =-3 .
\end{aligned}
$$

(d) $\lim _{t \rightarrow 1} \frac{t^{3}-2 t^{2}+t}{|t-1|}$.

Solution. Let us compute the left limit and the right limit. For the left limit, we have $t<1$, so $|t-1|=-(t-1)$. So

$$
\begin{aligned}
\lim _{t \rightarrow 1^{-}} \frac{t^{3}-2 t^{2}+t}{|t-1|} & =\lim _{t \rightarrow 1^{-}} \frac{t(t-1)^{2}}{-(t-1)} \\
& =\lim _{t \rightarrow 1^{-}}-t(t-1) \\
& =-1(1-1) \\
& =0
\end{aligned}
$$

For the right limit, we have $t>1$ so $|t-1|=t-1$. Therefore

$$
\begin{aligned}
\lim _{t \rightarrow 1^{+}} \frac{t^{3}-2 t^{2}+t}{|t-1|} & =\lim _{t \rightarrow 1^{+}} \frac{t(t-1)^{2}}{t-1} \\
& =\lim _{t \rightarrow 1^{-}} t(t-1) \\
& =1(1-1) \\
& =0
\end{aligned}
$$

Since $\lim _{t \rightarrow 1^{-}} \frac{t^{3}-2 t^{2}+t}{|t-1|}=\lim _{t \rightarrow 1^{+}} \frac{t^{3}-2 t^{2}+t}{|t-1|}=0$, it follows that $\lim _{t \rightarrow 1^{-}} \frac{t^{3}-2 t^{2}+t}{|t-1|}=0$.
(e) $\lim _{x \rightarrow-2} f(x)$ where $f(x)=\left\{\begin{array}{ll}3 x+8 & \text { if } x<-2 \\ 8 & \text { if } x=-2 \\ \frac{x+2}{\sqrt{x+3}-1} & \text { if } x>-2\end{array}\right.$.

Solution. We have

$$
\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{-}} 3 x+8=3(-2)+8=2
$$

and

$$
\begin{aligned}
\lim _{x \rightarrow-2^{+}} f(x) & =\lim _{x \rightarrow-2^{+}} \frac{x+2}{\sqrt{x+3}-1} \cdot \frac{\sqrt{x+3}+1}{\sqrt{x+3}+1} \\
& =\lim _{x \rightarrow-2^{+}} \frac{(x+2)(\sqrt{x+3}+1)}{(\sqrt{x+3})^{2}-1^{2}} \\
& =\lim _{x \rightarrow-2^{+}} \frac{(x+2)(\sqrt{x+3}+1)}{x-2} \\
& =\lim _{x \rightarrow-2^{+}} \sqrt{x+3}+1 \\
& =2
\end{aligned}
$$

Since $\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{+}} f(x)=2$, it follows that $\lim _{x \rightarrow-2} f(x)=2$.
(f) $\lim _{x \rightarrow 0} f(x)$ where $f(x)=\left\{\begin{array}{ll}\frac{\sin (3 x)}{x} & \text { if } x<0 \\ 2 e^{\cos (x)-1} & \text { if } x \geqslant 0\end{array}\right.$.

Solution. We have

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}} \frac{\sin (3 x)}{x} \cdot \frac{3 x}{3 x} \\
& =\lim _{x \rightarrow 0^{-}} \frac{\sin (3 x)}{3 x} \cdot \frac{3 x}{x} \\
& =\left(\lim _{x \rightarrow 0^{-}} \frac{\sin (3 x)}{3 x}\right)\left(\lim _{x \rightarrow 0^{-}} 3\right) \\
& =1 \cdot 3 \\
& =3
\end{aligned}
$$

and

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} 2 e^{\cos (x)-1}=2 e^{\cos (0)-1}=2 e^{1-1}=2 e^{0}=2
$$

Since $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$, we conclude that $\lim _{x \rightarrow 0} f(x)$ does not exist.
2. Consider the function $f(x)=\frac{\tan (8 x)}{|2 x|}$ and suppose that the graph of another function g is given below.

(a) Find $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 0} g(x)$ or explain why it does not exist.

Solution. We have

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{\sin (8 x)}{-2 x \cos (8 x)} \cdot \frac{8 x}{8 x}=\left(\lim _{x \rightarrow 0^{-}} \frac{\sin (8 x)}{8 x}\right)\left(\lim _{x \rightarrow 0^{-}} \frac{8 x}{-2 x \cos (8 x)}\right)=-\frac{4}{\cos (0)}=-4
$$

and

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{\sin (8 x)}{2 x \cos (8 x)} \cdot \frac{8 x}{8 x}=\left(\lim _{x \rightarrow 0^{+}} \frac{\sin (8 x)}{8 x}\right)\left(\lim _{x \rightarrow 0^{+}} \frac{8 x}{2 x \cos (8 x)}\right)=\frac{4}{\cos (0)}=4
$$

Since $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$, we conclude that $\lim _{x \rightarrow 0} f(x)$ does not exist .

By inspection of the graph, we see that

$$
\lim _{x \rightarrow 0^{-}} g(x)=3, \quad \lim _{x \rightarrow 0^{+}} g(x)=-1
$$

Since $\lim _{x \rightarrow 0^{-}} g(x) \neq \lim _{x \rightarrow 0^{+}} g(x)$, we conclude that $\lim _{x \rightarrow 0} g(x)$ does not exist.
(b) Find $\lim _{x \rightarrow 0}|f(x)|$ and $\lim _{x \rightarrow 0}|g(x)|$ or explain why it does not exist.

Solution. We have

$$
\lim _{x \rightarrow 0^{-}}|f(x)|=\left|\lim _{x \rightarrow 0^{-}} f(x)\right|=|-4|=4
$$

and

$$
\lim _{x \rightarrow 0^{+}}|f(x)|=\left|\lim _{x \rightarrow 0^{+}} f(x)\right|=|4|=4
$$

Since $\lim _{x \rightarrow 0^{-}}|f(x)|=\lim _{x \rightarrow 0^{+}}|f(x)|=4$, we conclude that $\lim _{x \rightarrow 0}|f(x)|=4$.
We have

$$
\lim _{x \rightarrow 0^{-}}|g(x)|=\left|\lim _{x \rightarrow 0^{-}} g(x)\right|=|3|=3
$$

and

$$
\lim _{x \rightarrow 0^{+}}|g(x)|=\left|\lim _{x \rightarrow 0^{+}} g(x)\right|=|-1|=1
$$

Since $\lim _{x \rightarrow 0^{-}}|g(x)| \neq \lim _{x \rightarrow 0^{+}}|g(x)|$, we conclude that $\lim _{x \rightarrow 0}|g(x)|$ does not exist
(c) Find $\lim _{x \rightarrow 0} f(x)+2 g(x)$ or explain why it does not exist.

Solution. We have

$$
\lim _{x \rightarrow 0^{-}} f(x)+2 g(x)=\left(\lim _{x \rightarrow 0^{-}} f(x)\right)+2\left(\lim _{x \rightarrow 0^{-}} g(x)\right)=-4+2 \cdot 3=2
$$

and

$$
\lim _{x \rightarrow 0^{+}} f(x)+2 g(x)=\left(\lim _{x \rightarrow 0^{+}} f(x)\right)+2\left(\lim _{x \rightarrow 0^{+}} g(x)\right)=4+2 \cdot(-1)=2
$$

Since $\lim _{x \rightarrow 0^{-}} f(x)+2 g(x)=\lim _{x \rightarrow 0^{+}} f(x)+2 g(x)=2$, we conclude that $\lim _{x \rightarrow 0} f(x)+2 g(x)=2$.
(d) [Advanced] Find the value of the constant a for which $\lim _{x \rightarrow 0} \frac{g(x)}{f(x)+a}$ exists. For this value of a, find the value of the limit.

Solution. We have

$$
\lim _{x \rightarrow 0^{-}} \frac{g(x)}{f(x)+a}=\frac{\lim _{x \rightarrow 0^{-}} g(x)}{\left(\lim _{x \rightarrow 0^{-}} f(x)\right)+\left(\lim _{x \rightarrow 0^{-}} a\right)}=\frac{3}{-4+a}
$$

and

$$
\lim _{x \rightarrow 0^{+}} \frac{g(x)}{f(x)+a}=\frac{\lim _{x \rightarrow 0^{+}} g(x)}{\left(\lim _{x \rightarrow 0^{+}} f(x)\right)+\left(\lim _{x \rightarrow 0^{+}} a\right)}=\frac{-1}{4+a} .
$$

The two-sided limit exists when both one-sided limits are equal. This gives the condition $\frac{3}{-4+a}=$ $\frac{-1}{4+a}$, that is $3(4+a)=-(-4+a)$, or $12+3 a=4-a$. Solving this for a gives $a=-2$. Then we have

$$
\lim _{x \rightarrow 0} \frac{g(x)}{f(x)-2}=\frac{-1}{4-2}=-\frac{1}{2} .
$$

