Learning Goals

Learning Goal	Homework Problems
2.5.1 Determine where functions are continuous using the function's graph and if they can be made continuous by changing their values at certain points.	$1-10$.
2.5.2 Determine where functions are continuous (algebraically) by applying the continuity test.	$11-40$.
2.5.3 Find values that make a function continuous.	$41-54$.
2.5.4 Apply the intermediate value theorem to find solutions of equations.	$55-60,73-80$.
2.5.5 Analyze concepts involving continuous functions.	$61-72$.

Continuity: f is continuous if its graph has no holes or breaks.
Precise definition: f is continuous at c if $\lim _{x \rightarrow c} f(x)=f(c)$

This means that:

- $f(c)$ exists (c is in the domain of f)
- $\lim _{x \rightarrow c} f(x)$ exists $\left(\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)\right)$
- $f(c)=\lim _{x \rightarrow c} f(x)$.
\rightarrow These three conditions are called the continuity test.

We say that f is discontinuous (or has a discontinuity) at c if f is not continuous at c.
We say that f is continuous on an interval I if f is continuous at every point c in I.

One-sided continuity:

- f is left -continuous at c if $\lim _{x \rightarrow c^{-}} f(x)=f(c)$.
- f is right - continuous at c if $\lim _{x \rightarrow c^{+}} f(x)=f(c)$.

f is left continuous at 3 right continuous at -2 continuous at 1 continuous on $[-2,3]$.

Examples: 1)

continuous at c since $\lim _{x \rightarrow c} f(x)=f(c)$

removable discontinuity at $x=c$ $\lim _{x \rightarrow c}$ exists but is not equal to $f(c)$.

jump discontinuity at $x=c$.

$$
\lim _{x \rightarrow c^{-}} f(x) \neq \lim _{x \rightarrow c^{+}} f(x)
$$

infinite discontinuity at $x=c$. $\lim _{x \rightarrow c^{-}} f(x)$ or $\lim _{x \rightarrow c^{+}} f(x)$ is infinite

essential discontinuity
(e.g. infinite oscillation)
2) Common functions are continuous on their domain. For example, $f(x)=\frac{\sqrt{3-x}}{x+7}$ is continuous on

$$
D_{f}=(-\infty,-7) \cup(-7,3]
$$

$g(x)=\ln \left(x^{2}-4\right)$ is continuous on $\quad D_{g}=(-\infty,-2) \cup(2, \infty)$
$h(x)=\arcsin (3 x)$ is continuous on $D_{h}=\left[-\frac{1}{3}, \frac{1}{3}\right]$.
3) Where is the function $f(x)=\left\{\begin{array}{lc}-x^{2}-5 x-6 & x \leqslant-1 \\ 5-x & -1<x \leqslant 1 \\ \frac{x^{2}+2 x-3}{x-1} & x>1\end{array}\right.$ continuous?

We know f is continuous on $(-\infty,-1),(-1,1)$ and $(1, \infty)$ (each piece is a common function). We only need to test the transition points $x=-1,1$.

$$
\text { At } \left.\begin{array}{rl}
x=-1: \quad & \lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}}\left(-x^{2}-5 x-6\right)=-2 \\
\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}}(5-x)=6
\end{array}\right] \neq
$$

So $\lim _{x \rightarrow-1} f(x)$ DNE and f has a jump discontinuity at $x=-1$.

At $x=1: \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(5-x)=4$

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{x^{2}+2 x-3}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{(x-1)(x+3)}{x-1}=4 \\
& f(1)=4 .
\end{aligned}
$$

So $\lim _{x \rightarrow 1} f(x)=f(1)=4: \quad f$ is continuous at $x=1$.

Conclusion: f is continuous on $(-\infty,-1) \cup(-1, \infty)$.

4) The function $f(x)=\frac{\sin (7 x)}{2 x}$ is continuous on $(-\infty, 0) \cup(0, \infty)$ and undefined at $x=0$. Can we define a value of $f(0)$ that would make f continuous at $x=0$?

$$
\lim _{x \rightarrow 0} \frac{\sin (7 x)}{2 x}=\lim _{x \rightarrow 0} \frac{\sin (7 x)}{2 x} \cdot \frac{7 x}{2 x}=\frac{7}{2}
$$

So defining $f(0)=\frac{7}{2}$ gives continuity at $x=0$.

The original function has a removable discontinuity at $x=0$

Continuous extension at $x=0$
5) Find the values of a, b such that the function

$$
f(x)=\left\{\begin{array}{ll}
a x-4 & x<1 \\
2 a+b & x=1 \\
\frac{x-1}{\sqrt{x}-1} & x>1
\end{array} \quad \text { is continuous on } \mathbb{R}\right.
$$

At $x=1$ we want $\lim _{x \rightarrow 1^{-}} f(x)=f(1)=\lim _{x \rightarrow 1^{+}} f(x)$

- $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} a x-4=a-4$
- $f(1)=2 a+b$
- $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{x-1}{\sqrt{x}-1} \cdot \frac{\sqrt{x}+1}{\sqrt{x}+1}=\lim _{x \rightarrow 1^{+}} \frac{(x-1)(\sqrt{x}+1)}{x-1}=\sqrt{1+1}=2$.

So we get the conditions $a-4=2 a+b=2$, which we must solve for a, b.

$$
\begin{aligned}
& a-4=2 \Rightarrow \begin{array}{l}
a=6 \\
2 a+b=2 \Rightarrow \\
b=2-2 a=2-12 \\
b=-10 .
\end{array}
\end{aligned}
$$

6) Find the values of a, b such that the function

$$
f(x)=\left\{\begin{array}{cc}
5 & x<-1 \\
a x+b & -1 \leq x \leq 2 \\
\frac{x-2}{\frac{7}{x+5}-1} & x>2
\end{array} \quad \text { is continuous on } \mathbb{R}\right.
$$

Each piece is continuous. At $x=-1$, we want

$$
\lim _{x \rightarrow-1^{-}} f(x)=f(-1)=\lim _{x \rightarrow-1^{+}} f(x)
$$

- $\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1} 5=5$
- $f(-1)=a(-1)+b=-a+b$
- $\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} a x+b=-a+b$

So we get the condition $-a+b=5$

At $x=2$, we want $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)$

- $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} a x+b$
- $f(\alpha)=2 a+b$
- $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} \frac{x-2}{\frac{7}{x+5}-1}=\lim _{x \rightarrow 2^{+}} \frac{x-2}{\frac{7-(x+5)}{x+5}}=\lim _{x \rightarrow 2^{+}} \frac{(x-2)(x+5)}{2-x}$

$$
=\lim _{x \rightarrow 2^{+}} \frac{(x-2)(x+5)}{-(x-2)}=\lim _{x \rightarrow 2^{+}}-(x+5)=-7
$$

So we get the condition $2 a+b=-7$.

We must now solve the conditions $\left\{\begin{array}{l}2 a+b=-7 \\ -a+b=5\end{array}\right.$ for a, b.
Subtract the two: $\quad 2 a+b-(-a+b)=-7-5$

$$
\begin{aligned}
3 a & =-12 \\
a & =-4
\end{aligned}
$$

Then $b=a+5$

$$
b=1 \text {. }
$$

Intermediate Value Theorem: if a continuous function takes the values $f(a)$ and $f(b)$, it takes all values between $f(a)$ and $f(b)$ since the graph has no breaks/ holes.

If f is continuous on $[a, b]$ and y_{0} is between $f(a)$ and $f(b)$, there exists x_{0} in $[a, b]$ such that $f\left(x_{0}\right)=y_{0}$.

Remarks:

- The IVT guarantees the existence of at least one x_{0}. but there could be more.

- The theorem does not say how to find x_{0}; it just guarantees its existence.
- The theorem does not hold for discontinuous functions.

If f is discontinuous on $[a, b]$, it may skip some intermediate values between $f(a)$ and $f(b)$.

Examples: 1) Show that the equation $\cos (x)=x$ has a solution in $\left[0, \frac{\pi}{2}\right]$.

$$
\cos (x)=x \Leftrightarrow \frac{\cos (x)-x}{f(x)}=\underbrace{0}_{y_{0}} .
$$

We know that:

- $f(x)=\cos (x)-x$ is continuous on $\left[0, \frac{\pi}{2}\right]$.
- $f(0)=\cos (0)-0=1>0$
- $f\left(\frac{\pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)-\frac{\pi}{2}=-\frac{\pi}{2}<0$

So $y_{0}=0$ is an intermediate value between $f(0)$ and $f\left(\frac{\pi}{2}\right)$. By the IVT, there exists x_{0} in $\left[0, \frac{\pi}{2}\right]$ such that $f\left(x_{0}\right)=y_{0}=0$
so $\cos \left(x_{0}\right)-x_{0}=0$
$\cos \left(x_{0}\right)=x_{0}: x_{0}$ is a solution.
2) Show that the equation $x e^{x}=3$ has a solution in the interval $[0,2]$.

$$
\frac{x e^{x}}{f(x)}=\underbrace{3}_{y_{0}}
$$

We know that:

- $f(x)=x e^{x}$ is continuous on $[0,2]$.
- $f(0)=\Delta e^{0}=0<3$
- $f(2)=2 e^{2}>3$ since $e^{2}>2$.

So $y_{0}=3$ is an intermediate value between $f(0)$ and $f(2)$. By the IVT, there exists x_{0} in $[0,2]$ such that $f\left(x_{0}\right)=3$
$x_{0} e^{x_{0}}=3: \quad x_{0}$ is a solution.
3) Suppose that f is a continuous function such that

$$
f(-1)=-3, \quad f(0)=5, \quad f(1)=6, \quad f(2)=1 .
$$

What is the minimal number of solutions that the equation $f(x)=2 x$ must have in $[-1,2]$?

Put $g(x)=f(x)-2 x: g$ is continuous and we want to solve $g(x)=\underset{y_{0}}{0}$.
On $[-1,0]: \quad g(-1)=f(-1)-2(-1)=-3+2=-1<0 \quad\left\{\begin{array}{l}y_{0}=0 \text { is an }\end{array}\right.$ $g(0)=f(0)-2 \cdot 0=5>0 \quad \begin{aligned} & \text { intermediate value } \\ & \text { between } g(-1) \text { and } g(0)\end{aligned}$ between $g(-1)$ and $g(0)$
So $g(x)=0$ has at least one solution in $[-1,0]$.
On $[0,1]: \quad g(0)=5>0$
$g(1)=f(1)-2 \cdot 1=6-2=4>0$ a $9 \begin{aligned} & y_{0}=0 \text { is NOT } \\ & g(0) \text { and } g(1)\end{aligned}$ between

So $g(x)=0$ is not guaranteed to have a solution in $[0,1]$.

On $[1,2]:$

$$
g(1)=4>0
$$

$g(2)=f(2)-2 \cdot 2=1-4=-3<0\}$
$y_{0}=0$ is an intermediate value between $f(1)$ and $f(2)$

So $g(x)=0$ has at least one solution in $[1,2]$.

Conclusion: $g(x)=0$ has at least 2 solutions in $[-1,2]$.

The graph of f guaranteed to intersect $y=2 x$ at least twice on $[-1,2]$ by the IVT. There may be more than 2 solutions, but there cannot be less than 2 .

