Learning Goals

	Learn	ing G	oal										Hom	nework	x Prob	lems		
	2.5.1 graph	Detern and if	nine v f they (where t can be	function made	ons are conti	e conti nuous	inuous by ch	s using anging	g the fu g their	unction value	n's s at	1-10					
	 2.5.2 Determine where functions are continuous (algebraically) by applying the continuity test. 2.5.3 Find values that make a function continuous. 											/	11-40.					
													41-5	4.				
_	2.5.4 a equati	2.5.4 Apply the intermediate value theorem to find solutions of equations.											55-60, 73-80.					
	2.5.5 Analyze concepts involving continuous functions. 6												61-7	2.				

Continuity:
$$f$$
 is continuous if its graph has no holes or
breaks.
Precise definition: f is continuous at c if $\lim_{x \to c} f(x) = f(c)$
This means that:
• $f(c)$ exists (c is in the domain of f)
• $\lim_{x \to c} f(x)$ exists ($\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x^{+})$)
• $f(c) = \lim_{x \to c^{-}} f(x)$.
 \downarrow These three conditions are called the continuity test.
We say that f is discontinuous (or has a discontinuity)
at c if f is not continuous at c .
We say that f is continuous on an interval T if f is
continuous at every point c in T .
One-sided continuity:
• f is left-continuous at c if $\lim_{x \to c^{-}} f(x) = f(c)$.
• f is right-continuous at c if $\lim_{x \to c^{-}} f(x) = f(c)$.
• f is right-continuous at c if $\lim_{x \to c^{-}} f(x) = f(c)$.
• f is right-continuous at c if $\lim_{x \to c^{-}} f(x) = f(c)$.
• f is right-continuous at c if $\lim_{x \to c^{-}} f(x) = f(c)$.
• f is right-continuous at c if $\lim_{x \to c^{-}} f(x) = f(c)$.
• f is right-continuous at c if $\lim_{x \to c^{-}} f(x) = f(c)$.
• f is right-continuous at c if $\lim_{x \to c^{-}} f(x) = f(c)$.
• f is right-continuous at c if $\lim_{x \to c^{-}} f(x) = f(c)$.

infinite discontinuity at x=c. $\lim_{x \to c^{-}} f(x) \text{ or } \lim_{x \to c^{+}} f(x) \text{ is infinite}$ ×

γ	N AMMAA A		essent		ial	di	້າວ?	tinu	ity		
		→		(e <i>.</i> g.	in	fini	te	osc	llah	on)
	C	´ X			U		١				,

2) Common functions are continuous on their domain.
For example,
$$f(x) = \frac{\sqrt{3-x}}{x+4}$$
 is continuous on
 $D_{f} = (-\infty, -7)U(-7, 3]$
 $g(x) = \ln(x^{2} + 4)$ is continuous on $D_{g} = (-\infty, -2)U(2, \infty)$
 $h(x) = \arccos(3x)$ is continuous on $D_{h} = \begin{bmatrix} -\frac{1}{3}, \frac{1}{3} \end{bmatrix}$.
3) Where is the function $f(x) = \begin{cases} -x^{4}-5x-6 & x \leq -1 \\ 5-x & -1 < x \leq 1 \\ x^{2}+2x-3 & x > 1 \end{cases}$
We know f is continuous on $(-\infty, -1), (-1, 1)$ and $(1, \infty)$
(each piece is a common function). We only need to
test the transition points $x = -1, 1$.
At $x = -1$: $\lim_{x \to -1^{-1}} f(x) = \lim_{x \to -1^{-1}} (-x^{2} - 5x - 6) = -2$
 $\lim_{x \to -1^{+1}} f(x) = \lim_{x \to +1^{+1}} (5-x) = 6$
So $\lim_{x \to -1^{+1}} f(x) = \lim_{x \to +1^{+1}} (5-x) = 6$
At $x = 1$: $\lim_{x \to 1^{-1}} f(x) = \lim_{x \to 1^{+1}} (5-x) = 6$
 $\int dx = 1$: $\lim_{x \to 1^{-1}} f(x) = \lim_{x \to 1^{+1}} (5-x) = 6$
 $\int dx = 1$: $\lim_{x \to 1^{-1}} f(x) = \lim_{x \to 1^{+1}} (5-x) = 6$
 $\int dx = 1$: $\lim_{x \to 1^{-1}} f(x) = \lim_{x \to 1^{+1}} (5-x) = 6$
 $\int dx = 1$: $\lim_{x \to 1^{+1}} f(x) = \lim_{x \to 1^{+1}} (5-x) = 6$
 $\int dx = 1$: $\lim_{x \to 1^{+1}} f(x) = \lim_{x \to 1^{+1}} (5-x) = 4$
 $\int dx = 1$: $\lim_{x \to 1^{+1}} f(x) = \lim_{x \to 1^{+1}} (5-x) = 4$
 $\int dx = 1$: $\lim_{x \to 1^{+1}} f(x) = \lim_{x \to 1^{+1}} (5-x) = 4$
 $\int dx = 1$: $\lim_{x \to 1^{+1}} f(x) = \lim_{x \to 1^{+1}} (5-x) = 4$
 $\int dx = 1$: $\lim_{x \to 1^{+1}} f(x) = \lim_{x \to 1^{+1}} (5-x) = 4$
 $\int dx = 1$: $\lim_{x \to 1^{+1}} f(x) = \lim_{x \to 1^{+1}} (5-x) = 4$
 $\int dx = 1$: $\lim_{x \to 1^{+1}} f(x) = \lim_{x \to 1^{+1}} (5-x) = 4$
 $\int dx = 1$: $\lim_{x \to 1^{+1}} f(x) = \lim_{x \to 1^{+1}} (5-x) = 4$
 $\int dx = 1$: $\lim_{x \to 1^{+1}} f(x) = \lim_{x \to 1^{+1}} (5-x) = 4$
 $\int dx = 1$: $\lim_{x \to 1^{+1}} f(x) = \lim_{x \to 1^{+1}} (5-x) = 4$
 $\int dx = 1$: $\lim_{x \to 1^{+1}} f(x) = 1$

5) Find the values of a, b such that the function

$$f(x) = \begin{cases} ax - 4 & x < 1 \\ a + 6 & x = 1 \\ \hline x - 1 & x > 1 \end{cases} \text{ is continuous on } R.$$
At $x = 1$ we want $\lim_{x \to 1^{-}} f(x) = f(1) = \lim_{x \to 1^{+}} f(x)$
* $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} ax - 4 = a - 4$
* $f(1) = 2a + b$
* $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{x - 1}{\sqrt{x} + 1} = \lim_{x \to 1^{+}} \frac{(x - 1)(\sqrt{x} + 1)}{x^{-1}} = \sqrt{1} + 1 = 2.$
So we get the conditions $a - 4 = 2a + b = 2$, which
we must solve for a, b .
 $a - 4 = 2 \Rightarrow a = 6$
 $2a + b = 2 \Rightarrow b = 2 - 2a = 2 - 12$
(b = -10)
6) Find the values of a, b such that the function
 $f(x) = \begin{cases} 5 & x < -1 \\ \frac{2}{x^{-2}} & x > 2 \\ \frac{2}{x^{-2}} & x > 2 \end{cases}$
Each piece is continuous At $x = -1$, we want
 $\lim_{x \to -1^{-}} f(x) = f(-1) = \lim_{x \to -1^{+}} f(x)$.

•
$$\lim_{x \to +1^+} f(x) = \lim_{x \to -1^+} ax+b = -a+b$$

So we get the condition $-a+b=5$
At $x = 2$, we want $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} f(x) = f(2)$
• $\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} ax+b$
• $f(x) = 2a+b$
• $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{x-a}{x+5} = \lim_{x \to 2^+} \frac{x-2}{x+5} = \lim_{x \to 2^+} \frac{(x-a)(x+5)}{2-x}$
 $= \lim_{x \to 2^+} \frac{(x-3)(x+5)}{-(x+5)} = \lim_{x \to 2^+} -(x+5) = -7$.
So we get the condition $2a+b = -7$.
We must now solve the conditions $\begin{cases} 2a+b = -4 \\ -a+b = 5 \end{cases}$ for a, b .
Subtract the two: $3a+b-(-a+b) = -7-5$
 $3a = -12$
Then $b = a+5$
 $b = 1$.

• The theorem does not say how to find xo; it just guarantees its existence.

h ×

£(6)

o.

7 ×

f (a)

a

So
$$g(x) = 0$$
 is not guaranteed to have a solution in $[0,1]$.
On $[1,2]$: $g(1) = 4 > 0$
 $g(2) = 0$ has at least one solution in $[1,2]$.
So $g(x) = 0$ has at least one solution in $[1,2]$.
Conclusion: $g(x) = 0$ has at least 2 solutions in $[-1,2]$.
 $g(x) = 0$ has at least 4 solutions in $[-1,2]$.
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at least 4 solution $(2,1)$
 $g(x) = 0$ has at leas