Section 2.6
Limits Involving Infinity

Learning Goals

Learning Goal	Homework Problems
2.6.1 Find limits using a graph of the function.	$1,2$.
2.6.2 Compute limits of functions as x approaches infinity or negative infinity using appropriate algebraic manipulation.	$3-36$.
2.6.3 Find infinite limits.	$37-62$.
2.6.4 Graph rational functions and identify any asymptotes of the function.	$63-68$.
2.6.5 Use limits to find domains, ranges, and asymptotes of functions.	$69-74$.
2.6.6 Find and graph functions with given conditions.	$75-85$.
2.6.7 Compute the limits of differences of functions at infinity.	$86-92$.
2.6.8 Find and graph oblique asymptotes of rational functions.	$105-110$.
2.6.9 Answer conceptual questions involving limits at infinity, infinite limits, and asymptotes.	$83-85$.

Infinite limits:
$\lim _{x \rightarrow a} f(x)=\infty$ means that $f(x)$ gets arbitrarily large / grows without bounds as x approaches a.
$\lim _{x \rightarrow a} f(x)=-\infty$ means that $f(x)$ gets arbitrarily large and negative / decreases without bounds as x approaches a.

Graphically, $x=a$ is a vertical asymptote of f if either $\lim _{x \rightarrow a^{-}} f(x)$ is infinite or $\lim _{x \rightarrow a^{+}} f(x)$ is infinite.

Example:

$x=-2, x=1$ and $x=3$ are vAs of f.

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{-}} f(x)=\infty, \lim _{x \rightarrow-2^{+}} f(x)=-\infty, \lim _{x \rightarrow-2} f(x) \text { DNE } \\
& \lim _{x \rightarrow 1^{-}} f(x)=\infty, \lim _{x \rightarrow 1^{+}} f(x)=2, \lim _{x \rightarrow 1} f(x) \text { DNE } \\
& \lim _{x \rightarrow 3^{-}} f(x)=-\infty, \lim _{x \rightarrow 3^{+}} f(x)=-\infty, \lim _{x \rightarrow 3} f(x)=-\infty
\end{aligned}
$$

Remarks:

- Technically, $\lim _{x \rightarrow a} f(x)=\infty$ is a particular case of of limit that does not exist. But we always specify $\pm \infty$ when applicable. A limit exists when it is finite
- A vertical asymptote is a line, so it must always be given as an equation: " $x=3$ " and not "3".

How to find infinite limits/VAs:

- If substitution at $x=a$ gives " non-zero \#", the limits as $x \rightarrow a^{ \pm}$are infinite (analyze signs on each side to determine ∞ or $-\infty$) and $x=a$ is a VA.
- If substitution at $x=a$ gives " $\frac{0}{0}$: indeterminate! Do more work (algebra) to find the limit as $x \rightarrow a$.

Examples: 1) Vertical asymptotes of common functions.

- $f(x)=\frac{1}{x}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty, \quad \lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty, \lim _{x \rightarrow 0} \frac{1}{x} \text { ONE } \\
& x=0 \text { is a VA of } y=\frac{1}{x}
\end{aligned}
$$

- $f(x)=\frac{1}{x^{2}}$

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}=\infty, \quad \lim _{x \rightarrow 0^{-}} \frac{1}{x^{2}}=\infty, \quad \lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty
$$

$x=0$ is a VA of $y=\frac{1}{x^{2}}$

- $f(x)=\ln (x)$

$$
\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty
$$

$x=0$ is a VA of $y=\ln (x)$

- $f(x)=\tan (x)$

f has infinitely many VAs: $x=\frac{\pi}{2}+n \pi$ for any integer n.

2) Find the VAs of $f(x)=\frac{3 x^{2}-6 x}{x^{4}-4 x^{2}}$.

Potential VAs: set denominator to 0 .

$$
\begin{aligned}
x^{4}-4 x^{2}=0 \Rightarrow x^{2}\left(x^{2}-4\right)=0 & \Rightarrow x^{2}(x-2)(x+2)=0 \\
& \Rightarrow x=0,2,-2 .
\end{aligned}
$$

Test each value:

- At $x=-2$ substitution gives $\frac{3 \cdot 4+12}{0}: x=-2$ is a vA
- At $x=0$ substitution gives $\frac{0}{0}$: more work needed.

$$
\begin{aligned}
\lim _{x \rightarrow 0} f(x) & =\lim _{x \rightarrow 0} \frac{3 x(x-2)}{x^{2}(x-2)(x+2)} \quad \text { factor and simplify } \\
& =\lim _{x \rightarrow 0} \frac{3}{x(x+2)}="^{\prime}{ }^{\prime \prime} \text { so } x=0 \text { is a VA. }
\end{aligned}
$$

- At $x=2$ substitution gives $\frac{0}{0}$: more work needed. $\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{3 x(x-2)}{x^{2}(x-2)(x+2)} \quad$ factor and simplify
$=\lim _{x \rightarrow 2} \frac{3}{x(x+2)}=\frac{3}{8}$ so $x=2$ is not a VA. ($x=2$ is a hole.)

3) Find the vas of $f(x)=\frac{\sin (4 x)}{x^{2}-3 x}$.

Potential VAs: $x^{2}-3 x=0 \Rightarrow x(x-3)=0 \Rightarrow x=0, x=3$.

- At $x=0$: substitution gives $\frac{0}{0}$: more work needed.

$$
\begin{aligned}
\lim _{x \rightarrow 0} & \frac{\sin (4 x)}{x(x-3)} \cdot \frac{4 x}{4 x}=\lim _{x \rightarrow 0} \frac{\sin (4 x)}{4 x} \cdot \frac{4 x}{x(x-3)} \\
= & (\underbrace{\left(\lim _{x \rightarrow 0} \frac{\sin (4 x)}{4 x}\right.}_{=1})(\underbrace{\left.\lim _{x \rightarrow 0} \frac{4}{x-3}\right)}_{x \rightarrow 0}=1 \cdot \frac{4}{0-3}=-\frac{4}{3}: x=0 \text { is } \\
& \text { special trig limit }
\end{aligned}
$$

- At $x=3$ substitution gives $\frac{\sin (12)}{0}: x=3$ is a VA.

4) Calculate $\lim _{x \rightarrow-3^{-}} \frac{5 x}{6+2 x}$ and $\lim _{x \rightarrow-3^{+}} \frac{5 x}{6+2 x}$.

Substitution of $x=-3$ in $\frac{5 x}{6+2 x}$ gives " $\frac{-15 \text { ", so we know that }}{0}$ each one-sided limit is infinite.

- $\lim _{x \rightarrow-3^{-}} \frac{5 x}{6+2 x}=\frac{"-15 "}{0}=+\infty$
if $x<-3,6+2 x<0 \quad\}$
- $\lim _{x \rightarrow-3^{+}} \frac{5 x}{6+2 x}=\frac{-15}{0+}^{\prime \prime}=-\infty$
if $x>-3,6+2 x>0$

Limits at infinity:

- $\lim _{x \rightarrow \infty} f(x)=L$ means that $f(x)$ approaches L as x gets arbitrarily large / grows without bounds
- $\lim _{x \rightarrow-\infty} f(x)=L$ means that $f(x)$ approaches L as x gets arbitrarily large and negative / decreases without bounds.

Graphically, if $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$, the line $y=L$ is a horizontal asymptote of f.

Examples: 1) A function can have 0, 1 or 2 horizontal asymptotes.

- $f(x)=\frac{1}{x}$

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0=\lim _{x \rightarrow-\infty} \frac{1}{x}
$$

(Any limit of the form " some number " is 0)

$$
\text { as } x \rightarrow-\infty
$$

So $y=0$ is the only horizontal asymptote.

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty}\left(2+e^{3 x}\right)=2+0=2 \\
& \lim _{x \rightarrow \infty}\left(2+e^{3 x}\right)=\infty
\end{aligned}
$$

So $y=2$ is the only horizontal asymptote.

- $f(x)=\arctan (x)$

$$
y=\frac{\pi}{2}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \arctan (x)=\frac{\pi}{2} \\
& \lim _{x \rightarrow-\infty} \arctan (x)=-\frac{\pi}{2}
\end{aligned}
$$

So $y=\frac{\pi}{2}, y=-\frac{\pi}{2}$ are
$y=-\frac{\pi}{2} \quad$ the horizontal asymptotes.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \cos (x) \quad \text { DNE } \\
& \lim _{x \rightarrow-\infty} \cos (x) \quad \text { DNE }
\end{aligned}
$$

So no horizontal asymptote.
2) Find the horizontal asymptotes of $f(x)=\frac{2 x^{4}+3 x^{2}+1}{5 x^{4}+2 x-4}$
$\lim _{x \rightarrow \infty} \frac{2 x^{4}+3 x^{2}+1}{5 x^{4}+2 x-4} \quad \frac{\infty}{\infty}: \begin{aligned} & \text { indeterminate form, rewrite using } \\ & \text { algebra }\end{aligned}$
$=\lim _{x \rightarrow \infty} \frac{2 x^{4}+3 x^{2}+1}{5 x^{4}+2 x-4} \cdot \frac{\frac{1}{x^{4}}}{\frac{1}{x^{4}}} \quad$ divide by the largest power appearing

Similarly, $\quad \lim _{x \rightarrow \infty} \frac{2 x^{4}+3 x^{2}+1}{5 x^{4}+2 x-4}=\lim _{x \rightarrow-\infty} \frac{2+\frac{3^{\rightarrow 0}}{x^{2}}+\frac{1}{x^{4}}}{5+\frac{2}{x^{3}}-\frac{4}{x^{4}}}=\frac{2}{5}$.

So f has one horizontal asymptote: $y=\frac{2}{5}$.
3) Find the horizontal asymptotes of $f(x)=\frac{\sqrt{16 x^{2}+1}+x}{x-2}$.

- $\lim _{x \rightarrow \infty} \frac{\sqrt{16 x^{2}+1}+x}{x-2} \quad \frac{\infty}{\infty}$: indeterminate form, rewrite using
$=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}} \sqrt{16+\frac{1}{x^{2}}}+x}{x-2} \quad$ factor out x^{2} from radical

$$
=\lim _{\substack{x \rightarrow \infty \\ x>0 \\ \text { so }|x|=x}} \frac{|x| \sqrt{16+\frac{1}{x^{2}}}+x}{x-2} \quad \sqrt{x^{2}}=|x|= \begin{cases}x & \text { if } x \geqslant 0 \\ -x & \text { if } x<0\end{cases}
$$

$=\lim _{x \rightarrow \infty} \frac{x \sqrt{16+\frac{1}{x^{2}}}+x}{x-2} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \quad \begin{gathered}\text { divide by highest power in } \\ \text { denominator }\end{gathered}$

$$
=\lim _{x \rightarrow \infty} \frac{\sqrt{16+\frac{1}{x^{2}}}+1}{1-\frac{2}{x}}=\frac{\sqrt{16+0}+1}{1-0}=5
$$

$$
\begin{aligned}
& \text { - } \left.\begin{array}{rl}
\lim _{x \rightarrow-\infty} \frac{\sqrt{16 x^{2}+1}+x}{x-2}=\lim _{\substack{x \rightarrow-\infty \\
x<0 \\
s o|x|=-x}} \frac{|x| \sqrt{16+\frac{1}{x^{2}}}+x}{x-2}=\lim _{x \rightarrow-\infty} \frac{-x \sqrt{16+\frac{1}{x^{2}}}+x}{x-2} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \\
=\lim _{x \rightarrow-\infty} \frac{-\sqrt{16+\frac{1}{x^{2}} \rightarrow 0}+1}{1-\frac{2}{x}}=\frac{-\sqrt{16+0}+1}{1-0}=-3 .
\end{array} . . \begin{array}{l}
x \rightarrow 0
\end{array}\right) .
\end{aligned}
$$

So f has two horizontal asymptotes: $y=5$ and $y=-3$.
4) Find the horizontal asymptotes of $f(x)=\frac{3+2 e^{x}}{7-4 e^{x}}$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{3+2 e^{x}}{7-4 e^{x}}=\frac{3+2 \cdot 0}{7-4 \cdot 0}=\frac{3}{7} \\
& \lim _{x \rightarrow \infty} \frac{3+2 e^{x}}{7-4 e^{x}} \cdot \frac{\frac{1}{e^{x}}}{\frac{1}{e^{x}}}=\lim _{x \rightarrow \infty} \frac{\frac{3}{e^{x}}+2}{\frac{7}{e^{x}}-4}=\frac{2}{-4}=-\frac{1}{2} .
\end{aligned}
$$

So f has two horizontal asymptotes: $y=\frac{3}{7}$ and $y=-\frac{1}{2}$.
5) Calculate $\lim _{x \rightarrow \infty} \frac{\sin (x)}{x}$.

Since $-1 \leqslant \sin (x) \leqslant 1$, we have $-\frac{1}{x} \leqslant \frac{\sin (x)}{x} \leqslant \frac{1}{x}$ if $x>0$.

We know that:

$$
\lim _{x \rightarrow \infty}-\frac{1}{x}=0=\lim _{x \rightarrow \infty} \frac{1}{x} .
$$

So by the Squeeze Theorem,

$$
\lim _{x \rightarrow \infty} \frac{\sin (x)}{x}=0
$$

6) Calculate $\lim _{x \rightarrow \infty} \sqrt{9 x^{2}+5 x}-3 x$.
$\lim _{x \rightarrow \infty} \sqrt{9 x^{2}+5 x}-3 x \quad * \infty-\infty$: indeterminate form: more work
$=\lim _{x \rightarrow \infty}\left(\sqrt{9 x^{2}+5 x}-3 x\right) \frac{\sqrt{9 x^{2}+5 x}+3 x}{\sqrt{9 x^{2}+5 x}+3 x} \quad$ multiply by conjugate

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{9 x^{2}+5 x-(3 x)^{2}}{\sqrt{9 x^{2}+5 x}+3 x}=\lim _{x \rightarrow \infty} \frac{5 x}{\sqrt{9 x^{2}+5 x}+3 x} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{5}{\sqrt{9+5 / x}+3}=\frac{5}{\sqrt{9+0}+3}=\frac{5}{6} .
\end{aligned}
$$

7) Does $f(x)=\frac{x^{2}-1}{2 x+4}$ have any horizontal asymptotes?

- $\lim _{x \rightarrow \infty} \frac{x^{2}-1}{2 x+4} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}$ divide by highest power in denominator

$$
\left.=\lim _{x \rightarrow \infty} \frac{x-\frac{1}{x}}{2+\frac{4}{x}}=" \frac{\infty}{2} "=\infty\right]
$$

no horizontal asymptotes.

- $\lim _{x \rightarrow-\infty} \frac{x-\frac{1}{x}}{2+\frac{4}{x}}=\frac{-\infty}{2}=-\infty$. long division
However, observe that $\frac{x^{2}-1}{2 x+4}=\frac{1}{2} x-1+\frac{3}{2 x+4}$.

So $\lim _{x \rightarrow \pm \infty} f(x)-\left(\frac{1}{2} x-1\right)=0$.

We say that $y=\frac{1}{2} x-1$ is an oblique asymptote of f

In general:

- We say that $y=m x+b$ is an oblique asymptote of f if $\lim _{x \rightarrow \infty} f(x)-(m x+b)=0$
or $\lim _{x \rightarrow-\infty} f(x)-(m x+b)=0$.
- A rational function has an oblique asymptote when the degree of the numerator is one more than the degree of the denominator.
- To find the oblique asymptote, perform the long division of numerator by denominator. The oblique asymptote is the quotient.

