Learning Goals

Learning Goal Homework Problems 2.6.1 Find limits using a graph of the function. 1, 2. 2.6.2 Compute limits of functions as x approaches infinity or negative infinity using appropriate algebraic manipulation. 3-36. 2.6.3 Find infinite limits. 37-62. 2.6.4 Graph rational functions and identify any asymptotes of the function. 63-68. 2.6.5 Use limits to find domains, ranges, and asymptotes of functions. 69-74. 2.6.6 Find and graph functions with given conditions. 77-85. 2.6.7 Compute the limits of differences of functions. 105-110. 2.6.9 Find and graph oblique asymptotes of rational functions. 105-110. 2.6.9 Answer conceptual questions involving limits at infinity, infinite limits, and asymptotes. 83-85. Imits, and asymptotes. 91-91. 1 1 1 1 1 1 1 1 1 1 1 1 1 2.6.9 Find and graph oblique asymptotes of rational functions. 105-110. 2.6.9 Compute the limits of differences of the function of th		-															
2.6.2 Compute limits of functions as x approaches infinity or negative infinity using appropriate algebraic manipulation.3-36.2.6.3 Find infinite limits.37-62.2.6.4 Graph rational functions and identify any asymptotes of the function.63-68.2.6.5 Use limits to find domains, ranges, and asymptotes of functions.69-74.2.6.6 Find and graph functions with given conditions.75-85.2.6.7 Compute the limits of differences of functions at infinity.86-92.2.6.8 Find and graph oblique asymptotes of rational functions.105-110.2.6.9 Answer conceptual questions involving limits at infinity, infinite83-85.	Lear	rning (Goal										Hon	iewori	k Prob	olems	
2.6.2 Compute limits of functions as x approaches infinity or negative infinity using appropriate algebraic manipulation.3-36.2.6.3 Find infinite limits.37-62.2.6.4 Graph rational functions and identify any asymptotes of the function.63-68.2.6.5 Use limits to find domains, ranges, and asymptotes of functions.69-74.2.6.6 Find and graph functions with given conditions.75-85.2.6.7 Compute the limits of differences of functions at infinity.86-92.2.6.8 Find and graph oblique asymptotes of rational functions.105-110.2.6.9 Answer conceptual questions involving limits at infinity, infinite83-85.	2.6.1	l Find	limit	s using	a grag	oh of t	he fun	ction.					1, 2.				
2.6.3 Find infinite limits.37-62.2.6.4 Graph rational functions and identify any asymptotes of the function.63-68.2.6.5 Use limits to find domains, ranges, and asymptotes of functions.69-74.2.6.6 Find and graph functions with given conditions.75-85.2.6.7 Compute the limits of differences of functions at infinity.86-92.2.6.8 Find and graph oblique asymptotes of rational functions.105-110.2.6.9 Answer conceptual questions involving limits at infinity, infinite83-85.	2.6.2	2 Com	pute l	limits c	of func	tions a	as x ap	proac	hes in on.	finity	or neg	ative					
2.6.4 Graph rational functions and identify any asymptotes of the function.63-68.2.6.5 Use limits to find domains, ranges, and asymptotes of functions.69-74.2.6.6 Find and graph functions with given conditions.75-85.2.6.7 Compute the limits of differences of functions at infinity.86-92.2.6.8 Find and graph oblique asymptotes of rational functions.105-110.2.6.9 Answer conceptual questions involving limits at infinity, infinite83-85.		-				,							37-6	52.			
2.6.5 Use limits to find domains, ranges, and asymptotes of functions.69-74.2.6.6 Find and graph functions with given conditions.75-85.2.6.7 Compute the limits of differences of functions at infinity.86-92.2.6.8 Find and graph oblique asymptotes of rational functions.105-110.2.6.9 Answer conceptual questions involving limits at infinity, infinite83-85.	2.6.4	4 Grap				s and	identif	fy any	asym	ptotes	of the						
2.6.6 Find and graph functions with given conditions.75-85.2.6.7 Compute the limits of differences of functions at infinity.86-92.2.6.8 Find and graph oblique asymptotes of rational functions.105-110.2.6.9 Answer conceptual questions involving limits at infinity, infinite83-85.			limits	to find	l doma	ains, ra	anges,	and as	sympto	otes of	funct	ions.	69-7	/4.			
2.6.7 Compute the limits of differences of functions at infinity.86-92.2.6.8 Find and graph oblique asymptotes of rational functions.105-110.2.6.9 Answer conceptual questions involving limits at infinity, infinite83-85.																	
2.6.9 Answer conceptual questions involving limits at infinity, infinite 83-85.	2.6.7	7 Com	pute t	the lim	its of c	liffere	nces o	f func	tions a	ıt infir	ity.						
													_				
						stions	invol	ving li	mits a	t infin	ity, in	finite	83-8	35.			
Image: Series of the series of th																	
I I																	
I I																	
Image: Selection of the selec																	
Image: Sector of the sector																	
Image: state stat																	
Image:																	
Image:																	

Infinite limits:

 $\lim_{x \to a} f(x) = \infty \quad \text{means that} \quad f(x) \quad \text{gets arbitrarily large / grows}$ without bounds as x approaches a. $\lim_{X \to a} f(x) = -\infty$ means that f(x) gets arbitrarily large and negative / decreases without bounds as x approaches a. Graphically, x = a is a vertical asymptote of f if either $\lim_{x \to a^{-}} f(x)$ is infinite or $\lim_{x \to a^{+}} f(x)$ is infinite. Example : y = f (×) x = -2, x = 1 and x = 3 are VAS of f. *× x=3 X=I X=-2 $\lim_{x \to -2^{-}} f(x) = \infty, \lim_{x \to -2^{+}} f(x) = -\infty, \lim_{x \to -2} f(x) DNE$ $\lim_{x \to 1^-} f(x) = \infty, \quad \lim_{x \to 1^+} f(x) = 2, \quad \lim_{x \to 1} f(x) \quad DNE$ $\lim_{x \to 3^{-}} f(x) = -\infty, \lim_{x \to 3^{+}} f(x) = -\infty, \lim_{x \to 3} f(x) = -\infty$ x -> 3-

Remarks :

• Technically, $\lim_{x \to a} f(x) = \infty$ is a particular case of of limit that does not exist. But we always specify $\pm \infty$ when applicable. A limit <u>exists</u> when it is <u>finite</u>

- A vertical asymptote is a line, so it must always
 be given as an equation: "x = 3" and not "3".
- How to find infinite limits/VAs: • If substitution at x = a gives <u>non-zero</u> # ", the limits as x → a[‡] are infinite (analyze signs on each side to determine ∞ or -∞) and x = a is a VA.
 - If substitution at x = a gives $\begin{array}{c} \circ \\ \circ \\ \circ \\ \end{array}$ indeterminate $\begin{array}{c} \end{array}$ Do more work (algebra) to find the limit as $x \rightarrow a$.

Examples : 1) Vertical asymptotes of common functions. • $f(x) = \frac{1}{x}$

 $\lim_{x \to 0^+} \frac{1}{x} = \infty, \quad \lim_{x \to 0^-} \frac{1}{x} = -\infty, \quad \lim_{x \to 0^+} \frac{1}{x} = -\infty, \quad \lim$

x = 0 is a VA of $y = \frac{1}{x}$

x= o

y=<u>1</u> ×

2) Find the VAs of
$$f(x) = \frac{3x^2 - 6x}{x^4 - 4x^2}$$

Potential VAs : set denominator to 0.
 $x^4 - 4x^2 = 0 \Rightarrow x^2(x^2 - 4) = 0 \Rightarrow x^4(x - 2)(x + 2) = 0$
 $\Rightarrow x = 0, 2, -2$.
Test each value :
• At $x = -2$ substitution gives $\begin{pmatrix} 3 \cdot 4 + (2) \\ 0 \end{pmatrix}$: $x = -2$ is a VA
• At $x = 0$ substitution gives 0 : more work needed.
lim $f(x) = \lim_{x \to 0} \frac{3x(x - 2)}{x^4(x + 2)(x + 2)}$ so $x = 0$ if a VA.
• At $x = 2$ substitution gives 0 : more work needed.
lim $f(x) = \lim_{x \to 0} \frac{3x(x - 2)}{x^4(x + 2)(x + 2)}$ so $x = 0$ if a VA.
• At $x = 2$ substitution gives 0 : more work needed.
lim $f(x) = \lim_{x \to 0} \frac{3x(x - 2)}{x^4(x + 2)(x + 2)}$ factor and simplify
 $x \to 2$ is not a VA.
 $(x = 2 \text{ is not a VA.}$
 $(x = 2 \text{ is not a VA.}$
 $(x = 2 \text{ is a hole.})$

3) Find the VAs of $f(x) = \frac{\sin(4x)}{x^2 - 3x}$

Potential VAs : $x^2 - 3x = 0 \Rightarrow x(x-3) = 0 \Rightarrow x=0, x=3.$

• At
$$x = 0$$
 : substitution gives $\frac{0}{0}$: more work needed.

$$\lim_{x \to 0} \frac{\sin(4x)}{x(x-3)} \frac{4x}{4x} = \lim_{x \to 0} \frac{\sin(4x)}{4x} \frac{4x}{x(x-3)}$$

$$= \left(\lim_{x \to 0} \frac{\sin(4x)}{4x}\right) \left(\lim_{x \to 0} \frac{4}{x-3}\right) = 1 \cdot \frac{4}{0-3} = -\frac{4}{3} \cdot x = 0 \text{ is}$$

• At
$$x = 3$$
 substitution gives $\frac{\sin(12)}{0}$: $x = 3$ is a VA.

not a VA.

4) Calculate
$$\lim_{X \to -3^-} \frac{5x}{6+2x}$$
 and $\lim_{X \to -3^+} \frac{5x}{6+2x}$.

Substitution of x = -3 in $\frac{5x}{6+2x}$ gives $\frac{-15}{0}$, so we know that each one-sided limit is infinite.

•
$$\lim_{x \to -3^{-}} \frac{5x}{6+2x} = \frac{5}{0} = \frac{15}{15} = 15$$

•
$$\lim_{x \to -3^+} \frac{5x}{6+2x} = \frac{1}{-\infty}$$

if $x > -3$, $6+2x > 0$

•
$$f(x) = \arctan(x)$$

y
y
y
y = $\frac{\pi}{2}$
the horizontal asymptotes.
• $f(x) = \cos(x)$
y = $\frac{\pi}{2}$
the horizontal asymptotes.
• $f(x) = \cos(x)$
y = $\frac{\pi}{2}$
the horizontal asymptotes.
• $f(x) = \cos(x)$
NE
y = $\frac{\pi}{2}$
the horizontal asymptotes.
• $f(x) = \frac{3x^4 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2}{5}$
Find the horizontal asymptotes of $f(x) = \frac{3x^4 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + \frac{3x^6 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + \frac{3x^6 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^2 + \frac{3x^6 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^6 + \frac{3x^6 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^6 + \frac{3x^6 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^6 + \frac{3x^6 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^6 + \frac{3x^6 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^6 + \frac{3x^6 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^6 + \frac{3x^6 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^6 + \frac{3x^6 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^6 + \frac{3x^6 + 1}{5x^6 + 2x - 4}$
 $\frac{2x^6 + 3x^6 +$

So f has one horizontal asymptote:
$$y = \frac{2}{5}$$
.
3) Find the horizontal asymptotes of $f(x) = \frac{\sqrt{6x^2+1}+x}{x-2}$.
• $\lim_{x \to \infty} \frac{\sqrt{6x^2+1}+x}{x-2}$ or indeterminate form, neurite using algebra.
a $\lim_{x \to \infty} \frac{\sqrt{x^2}\sqrt{16+\frac{1}{x^2}+x}}{x-2}$ factor out x^2 from radical $x = 1$ if $x = 0$.
a $\lim_{x \to \infty} \frac{\sqrt{x^2}\sqrt{16+\frac{1}{x^2}+x}}{x-2}$ or $\sqrt{x^2}$ factor out x^2 from radical $x = 0$.
a $\lim_{x \to \infty} \frac{\sqrt{16+\frac{1}{x^2}+x}}{x-2}$ or $\sqrt{x^2}$ factor out x^2 from radical $x = 0$.
a $\lim_{x \to \infty} \frac{\sqrt{16+\frac{1}{x^2}+x}}{x-2}$ or $\sqrt{x^2}$ form $x = 0$.
a $\lim_{x \to \infty} \frac{\sqrt{16+\frac{1}{x^2}+x}}{x-2}$ or $\frac{1}{x}$ divide by highest power in $\frac{\sqrt{16+\frac{1}{x^2}+x}}{1-0}$ for $x = 0$.
a $\lim_{x \to \infty} \frac{\sqrt{16+\frac{1}{x^2}+1}}{1-\frac{1}{x}}$ for $x = 0$.
a $\lim_{x \to \infty} \frac{\sqrt{16+\frac{1}{x^2}+1}}{1-\frac{1}{x}}$ for $x = 0$.
a $\lim_{x \to \infty} \frac{\sqrt{16+\frac{1}{x^2}+1}}{1-\frac{1}{x}}$ for $x = 0$.
b $\lim_{x \to \infty} \frac{\sqrt{16+\frac{1}{x^2}+1}}{1-\frac{1}{x}}$ for $x = 0$.
b $\lim_{x \to \infty} \frac{\sqrt{16+\frac{1}{x^2}+1}}{1-\frac{1}{x}}$ for $x = 0$.
b $\lim_{x \to \infty} \frac{\sqrt{16+\frac{1}{x^2}+1}}{1-\frac{1}{x}}$ for $x = 0$.
b $\lim_{x \to \infty} \frac{\sqrt{16+\frac{1}{x^2}+1}}{1-\frac{1}{x}}$ for $\frac{\sqrt{16+\frac{1}{x}+1}}{1-\frac{1}{x}}$ for $\frac{1}{x}+\frac{1}{x}$ for $\frac{1}{x}+\frac{1}{x}$ for $\frac{1}{x}+\frac{1}{x}+\frac{1}{x}$ for $\frac{1}{x}+$

So f has two horizontal asymptotes:
$$y = \frac{3}{7}$$
 and $y = -\frac{1}{2}$.
5) Calculate $\lim_{x \to \infty} \frac{\sin(x)}{x}$.
Since $-1 \in \sin(x) \leq 1$, we have $-\frac{1}{x} \leq \frac{\sin(x)}{x} \leq \frac{1}{x}$ if $x > 0$.
 $y = \frac{\sin(x)}{x}$
 $y = \frac{\sin(x)}{x}$
 $y = \frac{\sin(x)}{x}$
 $y = \frac{\sin(x)}{x}$
 $y = \frac{1}{x}$
 $y = \frac{1}{x}$

asymptote is the quotient.