Section 2.6: Limits Involving Infinity - Worksheet

1. Evaluate the following limits. If a limit does not exist, explain why. If a limit is infinite, specify it and determine if it is ∞ or $-\infty$.
(a) $\lim _{x \rightarrow-1^{-}} \frac{x^{2}+3 x+2}{(x+1)^{2}}$.

Solution. Substitution gives $\frac{0}{0}$, so we need more analysis. We have

$$
\lim _{x \rightarrow-1^{-}} \frac{x^{2}+3 x+2}{(x+1)^{2}}=\lim _{x \rightarrow-1^{-}} \frac{(x+1)(x+2)}{(x+1)^{2}}=\lim _{x \rightarrow-1^{-}} \frac{x+2}{x+1}
$$

In this simplified form, substitution gives $\frac{1}{0}$ so the one-sided limit is infinite. To determine if the limit is ∞ or $-\infty$, we use a sign analysis. As $x \rightarrow-1^{-}, x+2>0$ and $x+1<0$, so $\frac{x+2}{x+1}<0$. Therefore

$$
\lim _{x \rightarrow-1^{-}} \frac{x^{2}+3 x+2}{(x+1)^{2}}=-\infty
$$

(b) $\lim _{x \rightarrow \infty} \frac{3 x \sqrt{x}+2}{\sqrt{4 x^{3}+1}}$.

Solution. Observe that $x \sqrt{x}=\sqrt{x^{3}}$ when $x>0$. So

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{3 x \sqrt{x}+2}{\sqrt{4 x^{3}+1}} & =\lim _{x \rightarrow \infty} \frac{3 x \sqrt{x}+2}{\sqrt{4 x^{3}+1}} \cdot \frac{\frac{1}{\sqrt{x^{3}}}}{\frac{1}{\sqrt{x^{3}}}} \\
& =\lim _{x \rightarrow \infty} \frac{3+\frac{2}{\sqrt{x^{3}}}}{\sqrt{4+\frac{1}{x^{3}}}} \\
& =\frac{3+0}{\sqrt{4+0}} \\
& =\frac{3}{2}
\end{aligned}
$$

(c) $\lim _{x \rightarrow 2 \pi} \frac{x}{\cos (x)-1}$.

Solution. Substitution gives $\frac{2 \pi}{0}$, so both one-sided limits are infinite. We need a sign analysis to determine if the limit is ∞ or $-\infty$ on each side. Observe that $\cos (x)-1 \leqslant 0$ for all x since the range of \cos is $[-1,1]$. It follows that as $x \rightarrow 2 \pi^{+}$and $x \rightarrow 2 \pi^{-}$, the values of $\frac{x}{\cos (x)-1}$ are negative (positive numerator and negative denominator). Hence,

$$
\lim _{x \rightarrow 2 \pi} \frac{x}{\cos (x)-1}=-\infty
$$

(d) $\lim _{x \rightarrow 2} \frac{x-5}{x^{2}-2 x}$.

Solution. Substitution gives $\frac{-3}{0}$, so both one-sided limits are infinite. We need a sign analysis to determine if the limit is ∞ or $-\infty$ on each side. When $x \rightarrow 2^{-}$, we have $0<x<2$ so $x^{2}-2 x=x(x-2)<0$ and $\frac{x-5}{x(x-2)}>0$. Therefore,

$$
\lim _{x \rightarrow 2^{-}} \frac{x-5}{x^{2}-2 x}=\infty .
$$

When $x \rightarrow 2^{+}$, we have $0 x>2$ so $x^{2}-2 x=x(x-2)>0$ and $\frac{x-5}{x(x-2)}<0$. Therefore,

$$
\lim _{x \rightarrow 2^{+}} \frac{x-5}{x^{2}-2 x}=-\infty .
$$

We conclude that $\lim _{x \rightarrow 2} \frac{x-5}{x^{2}-2 x}$ does not exist.
(e) $\lim _{x \rightarrow-\infty} \frac{x^{3}+2}{\sqrt{16 x^{6}+1}}$.

Solution. Observe that $\sqrt{x^{6}}=\left|x^{3}\right|=-x^{3}$ when $x<0$. So

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{x^{3}+2}{\sqrt{16 x^{6}+1}} & =\lim _{x \rightarrow-\infty} \frac{x^{3}+2}{\sqrt{x^{6}\left(16+\frac{1}{x^{6}}\right)}} \\
& =\lim _{x \rightarrow-\infty} \frac{x^{3}+2}{-x^{3} \sqrt{16+\frac{1}{x^{6}}}} \cdot \frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}} \\
& =\lim _{x \rightarrow-\infty} \frac{1+\frac{2}{x^{3}}}{-\sqrt{16+\frac{1}{x^{6}}}} \\
& =\frac{1+0}{-\sqrt{16+0}} \\
& =-\frac{1}{4} .
\end{aligned}
$$

(f) $\lim _{t \rightarrow \infty} \sqrt{9 t^{2}+8 t}-\sqrt{9 t^{2}-5 t}$.

Solution.

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \sqrt{9 t^{2}+8 t}-\sqrt{9 t^{2}-5 t} & =\lim _{t \rightarrow \infty}\left(\sqrt{9 t^{2}+8 t}-\sqrt{9 t^{2}-5 t}\right) \frac{\sqrt{9 t^{2}+8 t}+\sqrt{9 t^{2}-5 t}}{\sqrt{9 t^{2}+8 t}+\sqrt{9 t^{2}-5 t}} \\
& =\lim _{t \rightarrow \infty} \frac{\left(\sqrt{9 t^{2}+8 t}\right)^{2}-\left(\sqrt{9 t^{2}-5 t}\right)^{2}}{\sqrt{9 t^{2}+8 t}+\sqrt{9 t^{2}-5 t}} \\
& =\lim _{t \rightarrow \infty} \frac{9 t^{2}+8 t-\left(9 t^{2}-5 t\right)}{\sqrt{9 t^{2}+8 t}+\sqrt{9 t^{2}-5 t}} \\
& =\lim _{t \rightarrow \infty} \frac{13 t}{\sqrt{9 t^{2}+8 t}+\sqrt{9 t^{2}-5 t}} \cdot \frac{\frac{1}{t}}{\frac{1}{t}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{t \rightarrow \infty} \frac{13}{\sqrt{9+\frac{8}{t}}+\sqrt{9-\frac{5}{t}}} \\
& =\frac{13}{\sqrt{9+0}+\sqrt{9+0}} \\
& =\frac{13}{6}
\end{aligned}
$$

[Advanced]

(a) $\lim _{\theta \rightarrow-\infty} \frac{2 \theta+5 \sin (3 \theta)}{7 \theta}$.

Solution. Observe that

$$
\frac{2 \theta+5 \sin (3 \theta)}{7 \theta}=\frac{2}{7}+\frac{5 \sin (3 \theta)}{7 \theta}
$$

Since $-1 \leqslant \sin (3 \theta) \leqslant 1$, we have $-5 \leqslant 5 \sin (3 \theta) \leqslant 5$ and $-\frac{5}{7 \theta} \leqslant \frac{5 \sin (3 \theta)}{7 \theta} \leqslant \frac{5}{7 \theta}$. Additionally, we have

$$
\lim _{\theta \rightarrow-\infty}-\frac{5}{7 \theta}=\lim _{\theta \rightarrow-\infty} \frac{5}{7 \theta}=0
$$

So by the Squeeze Theorem, $\lim _{\theta \rightarrow-\infty} \frac{5 \sin (3 \theta)}{7 \theta}=0$. Therefore

$$
\lim _{\theta \rightarrow-\infty} \frac{2 \theta+5 \sin (3 \theta)}{7 \theta}=\lim _{\theta \rightarrow-\infty} \frac{2}{7}+\frac{5 \sin (3 \theta)}{7 \theta}=\frac{2}{7}+0=\frac{2}{7}
$$

(b) $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{\sqrt[3]{x}}-\frac{1}{\sqrt{x}}\right)$.

Solution. For $x>0$, we have

$$
\frac{1}{\sqrt[3]{x}}-\frac{1}{\sqrt{x}}=\frac{1}{x^{1 / 3}}-\frac{1}{x^{1 / 2}}=\frac{x^{1 / 6}}{x^{1 / 3+1 / 6}}-\frac{1}{x^{1 / 2}}=\frac{x^{1 / 6}}{x^{1 / 2}}-\frac{1}{x^{1 / 2}}=\frac{x^{1 / 6}-1}{x^{1 / 2}}
$$

Substituting $x=0$ in this expression would give $\frac{-1}{0}$, so we know that the one-sided limit is infinite. To determine if the limit is ∞ or $-\infty$, we look at the sign of the expression. For $x>0, \sqrt{x}>0$. As $x \rightarrow 0^{+}, x$ is close to 0 so $x^{1 / 6}-1<0$. It follows that $\frac{x^{1 / 6}-1}{x^{1 / 2}}<0$ and

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{\sqrt[3]{x}}-\frac{1}{\sqrt{x}}\right)=-\infty
$$

(c) $\lim _{t \rightarrow \infty} \frac{t \arctan (3 t)}{\sqrt{t^{2}+1}}$.

Solution.

$$
\lim _{t \rightarrow \infty} \frac{t \arctan (3 t)}{\sqrt{t^{2}+1}}=\lim _{t \rightarrow \infty} \frac{t \arctan (3 t)}{\sqrt{t^{2}+1}} \cdot \frac{\frac{1}{t}}{\frac{1}{t}}
$$

$$
\begin{aligned}
& =\lim _{t \rightarrow \infty} \frac{\arctan (3 t)}{\sqrt{1+\frac{1}{t^{2}}}} \\
& =\frac{\frac{\pi}{2}}{\sqrt{1+0}} \\
& =\frac{\pi}{2}
\end{aligned}
$$

2. Find the vertical and horizontal asymptotes of the following functions, if any. Also, determine the limit to the left and right of any vertical asymptote.
(a) $f(x)=\frac{x^{2}-3 x-4}{\sqrt{x}-2}$.

Solution. To find potential vertical asymptotes, we set the denominator equal to 0 . This gives $\sqrt{x}-2=0$, that is $x=4$. Substituting 4 in $f(x)$ gives $\frac{0}{0}$, so we need to do more analysis to determine if $x=4$ is indeed a vertical asymptote. The limit at 4 is

$$
\lim _{x \rightarrow 4} \frac{x^{2}-3 x-4}{\sqrt{x}-2} \cdot \frac{\sqrt{x}+2}{\sqrt{x}+2}=\lim _{x \rightarrow 4} \frac{(x-4)(x+1)(\sqrt{x}+2)}{x-4}=\lim _{x \rightarrow 4}(x+1)(\sqrt{x}+2)=(4+1)(\sqrt{4}+2) 20
$$

Since the limit as $x \rightarrow 4$ is finite, $x=4$ is not a vertical asymptote. So f has no vertical asymptote.
To find the horizontal asymptotes, we compute the limits at ∞ and $-\infty$. Note that f is undefined for $x<0$, so only the limit at ∞ makes sense. We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{2}-3 x-4}{\sqrt{x}-2} & =\lim _{x \rightarrow \infty} \frac{x^{2}-3 x-4}{\sqrt{x}-2} \cdot \frac{\frac{1}{\sqrt{x}}}{\frac{1}{\sqrt{x}}} \\
& =\lim _{x \rightarrow \infty} \frac{x^{3 / 2}-3 x^{1 / 2}-\frac{4}{\sqrt{x}}}{1-\frac{2}{\sqrt{x}}} \\
& =\frac{+\infty}{1} \\
& =\infty
\end{aligned}
$$

Therefore, f has no horizontal asymptote.
(b) $f(x)=\frac{x^{2}-1}{|x+1|^{3}}$.

Solution. To find potential vertical asymptotes, we set the denominator equal to 0 . This gives $|x+1|^{3}=0$, that is $x=-1$. Substituting -1 in $f(x)$ gives $\frac{0}{0}$, so we need to do more analysis to determine if $x=-1$ is indeed a vertical asymptote. The left and right limit at -1 are

$$
\begin{aligned}
& \lim _{x \rightarrow-1^{+}} \frac{x^{2}-1}{|x+1|^{3}}=\lim _{x \rightarrow-1^{+}} \frac{(x-1)(x+1)}{(x+1)^{3}}=\lim _{x \rightarrow-1^{+}} \frac{(x-1)}{(x+1)^{2}}=-\infty, \\
& \lim _{x \rightarrow-1^{-}} \frac{x^{2}-1}{|x+1|^{3}}=\lim _{x \rightarrow-1^{-}} \frac{(x-1)(x+1)}{-(x+1)^{3}}=\lim _{x \rightarrow-1^{-}}-\frac{(x-1)}{(x+1)^{2}}=\infty .
\end{aligned}
$$

So $x=-1$ is the one vertical asymptote of f.

To find the horizontal asymptotes of f, we compute the limits at ∞ and $-\infty$. We have

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{x^{2}-1}{|x+1|^{3}}=\lim _{x \rightarrow \infty} \frac{x^{2}-1}{(x+1)^{3}} \cdot \frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}-\frac{1}{x^{3}}}{\left(1+\frac{1}{x}\right)^{3}}=\frac{0-0}{(1+0)^{3}}=0, \\
& \lim _{x \rightarrow-\infty} \frac{x^{2}-1}{|x+1|^{3}}=\lim _{x \rightarrow-\infty} \frac{x^{2}-1}{-(x+1)^{3}} \cdot \frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}}=\lim _{x \rightarrow-\infty}-\frac{\frac{1}{x}-\frac{1}{x^{3}}}{\left(1+\frac{1}{x}\right)^{3}}=-\frac{0-0}{(1+0)^{3}}=0 .
\end{aligned}
$$

So $y=0$ is the one horizontal asymptote of f.
(c) $f(x)=\frac{7+2 e^{x}}{5 e^{x}-4}$.

Solution. To find potential vertical asymptotes, we set the denominator equal to 0. This gives $5 e^{x}-4=0$, that is $e^{x}=\frac{4}{5}$, so $x=\ln \left(\frac{4}{5}\right)$. Substituting this value in $f(x)$ gives $\frac{7+2 \cdot \frac{4}{5}}{0}$. This has the form $\frac{\text { non-zero number }}{0}$, so $x=\ln \left(\frac{4}{5}\right)$ is the one vertical asymptote of f.

To find the horizontal asymptotes of f, we compute the limits at ∞ and $-\infty$. Recall that $\lim _{x \rightarrow \infty} e^{x}=\infty$ and $\lim _{x \rightarrow-\infty} e^{x}=0$. Therefore

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{7+2 e^{x}}{5 e^{x}-4}=\frac{7+2 \cdot 0}{5 \cdot 0-4}=-\frac{7}{4} \\
& \lim _{x \rightarrow \infty} \frac{7+2 e^{x}}{5 e^{x}-4} \cdot \frac{\frac{1}{e^{x}}}{\frac{1}{e^{x}}}=\lim _{x \rightarrow \infty} \frac{\frac{7}{e^{x}}+2}{5-\frac{4}{e^{x}}}=\frac{0+2}{5-0}=\frac{2}{5} .
\end{aligned}
$$

So $y=-\frac{7}{4}$ and $y=\frac{2}{5}$ are the two horizontal asymptotes of f.
(d) $f(x)=\frac{\sqrt{x^{2}+25}+3 x}{2 x+5}$.

Solution. To find potential vertical asymptotes, we set the denominator equal to 0 . This gives $2 x+5=0$, or $x=-\frac{2}{5}$. Substituting this value in $f(x)$ gives the form $\frac{\text { non-zero number }}{0}$. It follows that $x=-\frac{2}{5}$ is the one vertical asymptote of f.

To find the horizontal asymptotes of f, we calculate the limits at ∞ and $-\infty$. We have

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+25}+3 x}{2 x+5} & =\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}\left(1+\frac{25}{x^{2}}\right)}+3 x}{2 x+5} \\
& =\lim _{x \rightarrow-\infty} \frac{|x| \sqrt{1+\frac{25}{x^{2}}}+3 x}{2 x+5} \\
& =\lim _{x \rightarrow-\infty} \frac{-x \sqrt{1+\frac{25}{x^{2}}}+3 x}{2 x+5} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \quad(x<0) \\
& =\lim _{x \rightarrow-\infty} \frac{-\sqrt{1+\frac{25}{x^{2}}}+3}{2+\frac{5}{x}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-\sqrt{1+0}+3}{2+0} \\
& =1, \\
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+25}+3 x}{2 x+5} & =\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}\left(1+\frac{25}{x^{2}}\right)}+3 x}{2 x+5} \\
& =\lim _{x \rightarrow \infty} \frac{|x| \sqrt{1+\frac{25}{x^{2}}}+3 x}{2 x+5} \\
& =\lim _{x \rightarrow \infty} \frac{x \sqrt{1+\frac{25}{x^{2}}}+3 x}{2 x+5} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \quad(x>0) \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{1+\frac{25}{x^{2}}}+3}{2+\frac{5}{x}} \\
& =\frac{\sqrt{1+0}+3}{2+0} \\
& =2 .
\end{aligned}
$$

So $y=1$ and $y=2$ are the two horizontal asymptotes of f.
(e) $f(x)=\frac{\sin (7 x)}{x^{2}+3 x}$.

Solution. To find potential vertical asymptotes, we set the denominator equal to 0 . This gives $x(x+3)=0$, or $x=-3,0$. Substituting $x=-3$ in $f(x)$ gives $\frac{\sin (-21)}{0}$, which has the form $\frac{\text { non-zero number }}{0}$, so $x=-3$ is indeed a vertical asymptote of f. Subsituting $x=0$ gives $\frac{0}{0}$, so we need more analysis to determine whether $x=0$ is a vertical asymptote or not. We have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (7 x)}{x^{2}+3 x} & =\lim _{x \rightarrow 0} \frac{\sin (7 x)}{x(x+3)} \cdot \frac{7 x}{7 x} \\
& =\lim _{x \rightarrow 0} \frac{\sin (7 x)}{7 x} \cdot \frac{7 x}{x(x+3)} \\
& =\left(\lim _{x \rightarrow 0} \frac{\sin (7 x)}{7 x}\right)\left(\lim _{x \rightarrow 0} \frac{7}{x+3}\right) \\
& =1 \cdot \frac{7}{3} \\
& =\frac{7}{3}
\end{aligned}
$$

so $x=0$ is not a vertical asymptote of f. In conclusion $x=-3$ is the one vertical asymptote of f.
To find the horizontal asymptotes of f, we calculate the limits at ∞ and $-\infty$. We have $-1 \leqslant$ $\sin (7 x) \leqslant 1$ so

$$
-\frac{1}{x^{2}+3 x} \leqslant \frac{\sin (7 x)}{x^{2}+3 x} \leqslant \frac{1}{x^{2}+3 x}
$$

Additionally, $\lim _{x \rightarrow \pm \infty}-\frac{1}{x^{2}+3 x}=\lim _{x \rightarrow \pm \infty}-\frac{1}{x^{2}+3 x}=0$. So by the Squeeze Theorem, $\lim _{x \rightarrow \pm \infty} \frac{\sin (7 x)}{x^{2}+3 x}=0$. In conclusion, $y=0$ is the one horizontal asymptote of f.
(f) $f(x)=x^{2} \cos \left(\frac{2}{x}\right)$.

Solution. The function f is continuous on its domain, that is $(-\infty, 0) \cup(0, \infty)$. Therefore, the only potential vertical asymptote is $x=0$. For any $x \neq 0$, we have

$$
-x^{2} \leqslant x^{2} \cos \left(\frac{2}{x}\right) \leqslant x^{2}
$$

and $\lim _{x \rightarrow 0}-x^{2}=\lim _{x \rightarrow 0} x^{2}=0$. So by the Squeeze Theorem, $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{2}{x}\right)=0$. Hence, f has no vertical asymptote.
To find the horizontal asymptotes, we must compute the limits at ∞ and $-\infty$. We have

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} x^{2} \cos \left(\frac{2}{x}\right)=\infty \cdot \cos (0)=\infty \cdot 1=\infty \\
& \lim _{x \rightarrow \infty} x^{2} \cos \left(\frac{2}{x}\right)=\infty \cdot \cos (0)=\infty \cdot 1=\infty
\end{aligned}
$$

So f has no horizontal asymptote.

[Advanced]

(g) $f(x)=\frac{3 x \arctan (x)+7}{x-1}$.

Solution. To find potential vertical asymptotes, we set the denominator equal to 0 . This gives $x-1=0$, or $x=1$. Substituting $x=1$ in $f(x)$ gives $\frac{\frac{3 \pi}{4}+7}{0}$. This has the form $\frac{\text { non-zero number }}{0}$, so $x=1$ is the one vertical asymptote of f.

To find the horizontal asymptotes, we must compute the limits at ∞ and $-\infty$. Recall that $\lim _{x \rightarrow-\infty} \arctan (x)=$ $-\frac{\pi}{2}$ and $\lim _{x \rightarrow \infty} \arctan (x)=\frac{\pi}{2}$, so we have

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{3 x \arctan (x)+7}{x-1} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}=\lim _{x \rightarrow-\infty} \frac{3 \arctan (x)+\frac{7}{x}}{1-\frac{1}{x}}=\frac{3 \cdot\left(-\frac{\pi}{2}\right)+0}{1-0}=-\frac{3 \pi}{2}, \\
& \lim _{x \rightarrow \infty} \frac{3 x \arctan (x)+7}{x-1} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{3 \arctan (x)+\frac{7}{x}}{1-\frac{1}{x}}=\frac{3 \cdot \frac{\pi}{2}+0}{1-0}=\frac{3 \pi}{2} .
\end{aligned}
$$

Hence, $y=-\frac{3 \pi}{2}$ and $y=\frac{3 \pi}{2}$ are the two horizontal asymptotes of f.
(h) $f(x)=\frac{3 e^{2 x}-5 e^{-x}}{2 e^{-x}+e^{4 x}}$.

Solution. Since the denominator of $f(x)$ is positive for any value of x, the function f is continuous on \mathbb{R}. Hence, f has no vertical asymptote.

To find the horizontal asymptotes, we must compute the limits at ∞ and $-\infty$. We have

$$
\lim _{x \rightarrow-\infty} \frac{3 e^{2 x}-5 e^{-x}}{2 e^{-x}+e^{4 x}} \cdot \frac{\frac{1}{e^{-x}}}{\frac{1}{e^{-x}}}=\lim _{x \rightarrow-\infty} \frac{3 e^{3 x}-5}{2+e^{5 x}}=\frac{3 \cdot 0-5}{2+0}=-\frac{5}{2}
$$

$$
\lim _{x \rightarrow \infty} \frac{3 e^{2 x}-5 e^{-x}}{2 e^{-x}+e^{4 x}} \cdot \frac{\frac{1}{e^{4 x}}}{\frac{1}{e^{4 x}}}=\lim _{x \rightarrow-\infty} \frac{3 e^{-2 x}-5 e^{-5 x}}{2 e^{-5 x}+1}=\frac{3 \cdot 0-5 \cdot 0}{2 \cdot 0+1}=0
$$

Hence, $y=-\frac{5}{2}$ and $y=0$ are the two horizontal asymptotes of f.
(i) $f(x)=\frac{1-\cos (5 x)}{x^{2}+x^{3}}$.

Solution. To find potential vertical asymptotes, we set the denominator equal to 0 . This gives $x^{2}(x+1)=0$, or $x=-1,0$. Subsituting $x=-1$ in $f(x)$ gives the form $\frac{\text { non-zero number }}{0}$, so $x=-1$ is a vertical asymptote of f. Subsituting $x=0$ gives $\frac{0}{0}$, so we need more analysis. We have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos (5 x)}{x^{2}+x^{3}} & =\lim _{x \rightarrow 0} \frac{1-\cos (5 x)}{x^{2}(x+1)} \cdot \frac{(5 x)^{2}}{(5 x)^{2}} \\
& =\lim _{x \rightarrow 0} \frac{1-\cos (5 x)}{(5 x)^{2}} \cdot \frac{(5 x)^{2}}{x^{2}(x+1)} \\
& =\left(\lim _{x \rightarrow 0} \frac{1-\cos (5 x)}{(5 x)^{2}}\right)\left(\lim _{x \rightarrow 0} \frac{25}{x+1}\right) \\
& =\frac{1}{2} \cdot \frac{25}{0+1} \\
& =\frac{25}{2} .
\end{aligned}
$$

So $x=0$ is not a vertical asymptote of f. It follows that $x=-1$ is the one vertical asymptote of f.
To find the horizontal asymptotes, we must compute the limits at ∞ and $-\infty$. We have $-1 \leqslant$ $\cos (5 x) \leqslant 1$, so $0 \leqslant 1-\cos (5 x) \leqslant 2$ and

$$
0 \leqslant \frac{1-\cos (5 x)}{x^{2}+x^{3}} \leqslant \frac{2}{x^{2}+x^{3}}
$$

Also, $\lim _{x \rightarrow \pm \infty} \frac{2}{x^{2}+x^{3}}=\lim _{x \rightarrow \pm \infty} 0=0$. By the Squeeze Theorem, it follows that $\lim _{x \rightarrow \pm \infty} \frac{1-\cos (5 x)}{x^{2}+x^{3}}=0$. So $y=0$ is the one horizontal asymptote of f.

