Sections 3.1, 3.2

 Derivatives and Tangent Lines
Learning Goals

Learning Goal	Homework Problems
3.1.1 Estimate a derivative by visual inspection of a graph.	$1-4,23-28,39-48$.
3.1.2 Compute a derivative as a limit of a difference quotient. Recognize a function as non-differentiable at a point when this limit does not exist.	$5-36,39-48$.
3.1.3 Interpret the derivative as the slope of a graph or of a tangent line. Find the equation of a line tangent to a graph using the derivative at a point.	$5-22,27,28,33-36$.
3.1.4 Interpret the derivative as an instantaneous rate of change.	$23,24,29-32$.
Learning Goal	Homework Problems
3.2.1 Understand Leibniz notation for derivatives.	$7-12,19-22$.
3.2.2 Compute the derivative of a function using limits.	$1-26,37-42,51-58$,
3.2.3 Understand how the derivative of a function f relates to the graph of f Recognize a function as non-differentiable at a point based on the behavior of its graph.	$27-32,34-36,45-54$,
3.2.4 Compute the one-sided derivative of a function at a point using one-sided limits. Use one-sided limits and continuity properties to determine whether a function is differentiable at a certain point.	$37-42,45-50,63$.
3.2.5 Answer conceptual questions involving differentiation.	$55-60,63$.

Motivation: calculate the instantaneous rate of change of a function at a point.

Slope of secant line:

$$
m_{s e c}=\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

\rightarrow average rate of change on $\left[x_{0}, x_{0}+h\right]$.

Slope of tangent line at $x=x_{0}$:

$$
m_{\tan }=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

This is the instantaneous rate of change of f at x_{0}.

Definition: the derivative of f at x_{0} is the number

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\lim _{z \rightarrow x_{0}} \frac{f(z)-f\left(x_{0}\right)}{z-z_{0}}
$$

We say that f is differentiable at x_{0} if $f^{\prime}\left(x_{0}\right)$ exists. The tangent line of f at x_{0} is the line passing through $\left(x_{0}, f\left(x_{0}\right)\right)$ and having slope $f^{\prime}\left(x_{0}\right)$. It has equation

$$
\begin{array}{ll}
& y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \\
\text { or } & y=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)
\end{array}
$$

The function $y=f^{\prime}(x)$ is called the derivative of f.

Interpretation:
$f^{\prime}\left(x_{0}\right)$ is the instantaneous rate of change / slope of the graph of f at x_{0}

Other notation for derivatives: if $y=f(x)$:

$$
\begin{aligned}
& f^{\prime}=\frac{d f}{d x}=\frac{d y}{d x} \\
& \text { a function }
\end{aligned}
$$

$$
f^{\prime}\left(x_{0}\right)=\frac{d f}{d x \mid x=x_{0}}=\frac{d y}{\left.d x\right|_{x=x_{0}}}
$$

the value of f^{\prime} at x_{0} : a number representing the slope of $y=f(x)$ at $x=x_{0}$

Examples: 1) For $f(x)=x^{2}+3 x-1$, find $f^{\prime}(1)$ and an equation of the tangent line to the graph of f at

$$
\begin{aligned}
& x=1 . \\
& f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{(1+h)^{2}+3(1+h)-1-3}{h} \\
& =\lim _{h \rightarrow 0} \frac{1+2 h+h^{2}+3+3 h-1-3}{h}=\lim _{h \rightarrow 0} \frac{5 h+h^{2}}{h}=\lim _{h \rightarrow 0} 5+h=5 .
\end{aligned}
$$

Tangent line at $x=1$:

- has slope $f^{\prime}(1)=5 \quad y-3=5(x-1)$
- passes through $(1, f(1))=(1,3)]$ or $y=5(x-1)+3$.

2) For $f(x)=\frac{6}{x-1}$, find $f^{\prime}(4)$ and equations of the tangent and normal lines to the graph of f at $x=4$.

$$
\begin{aligned}
& f^{\prime}(4)=\lim _{h \rightarrow 0} \frac{f(4+h)-f(4)}{h}=\lim _{h \rightarrow 0} \frac{\frac{6}{4+h-1}-\frac{6}{4-1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{6}{3+h}-2}{h}=\lim _{h \rightarrow 0} \frac{6-2(3+h)}{h(3+h)}=\lim _{h \rightarrow 0} \frac{6-6-2 h}{h(3+h)} \\
& =\lim _{h \rightarrow 0} \frac{-2 h}{h(3+h)}=\lim _{h \rightarrow 0}-\frac{2}{3+h}=-\frac{2}{3}
\end{aligned}
$$

Tangent line at $x=4$:

- has slope $f^{\prime}(4)=-\frac{2}{3} \quad y-2=-\frac{2}{3}(x-4)$
- passes through $(4, f(4))=(4,2)$ or $y=-\frac{2}{3}(x-4)+2$

Normal line at $x=4$ is perpendicular to the tangent line, so:

- has slope $-\frac{1}{f^{\prime}(4)}=\frac{3}{2} \quad y \quad y=\frac{3}{2}(x-4)+2$.
- passes through $(4, f(4))=(4,2)$

2) The graph of f is given below.

a) Solve $f^{\prime}(x)=0$
b) Solve $f^{\prime}(x)>0$ and $f^{\prime}(x)<0$.
c) Which is largest/ least?

$$
f^{\prime}(-4), f^{\prime}(2), f^{\prime}(-2.5)
$$

a) $f^{\prime}(x)=0$ where the tangent line is horizontal, ie. the graph of f is flat.

This happens at $x=-3,-1,1,3,5$.
b) $f^{\prime}(x)>0$ means f has positive slope and goes upward. $f^{\prime}(x)<0$ means f has negative slope and goes downward.

$$
\begin{aligned}
f^{\prime}(x)>0: & (-5,-3),(-1,1),(1,3), \\
& (5, \infty) \\
f^{\prime}(x)<0: & (-3,-1),(3,5) .
\end{aligned}
$$

c) The graph of f is steeper at $x=2$ than it is at $x=-4$ so $f^{\prime}(-4)<f^{\prime}(2)$.
Graph has negative slope at -2.5 so $f^{\prime}(-2.5)<0<f^{\prime}(-4)<f^{\prime}(2)$.
3) Suppose that $f(t)=$ position of an object moving along an axis in ft, t in sec.
$f^{\prime}(t)=$ instantaneous velocity of the object in $\mathrm{ft} / \mathrm{sec}$. Suppose f^{\prime} is graphed below.

The object moves forward when $f^{\prime}(t)>0:(0,3),(5.5,6)$ Moves backward when $f^{\prime}(t)<0$: $(4,5.5)$.

The object is stopped when $f^{\prime}(t)=0:(3,4)$ and $t=5.5$.
The object accelerates when f^{\prime} is increasing: $(0,2),(5,6)$.
The object decelerates when f^{\prime} is decreasing: $(2,3),(4,5)$.
4) For $f(x)=|x|$, calculate $f^{\prime}(-2)$ and $f^{\prime}(0)$.

$$
\begin{aligned}
& f^{\prime}(-2)= \lim _{h \rightarrow 0} \frac{-(-2+h)=2-h}{} \frac{|-2+h|-|-3|}{h}=\lim _{h \rightarrow 0} \frac{2-h-2}{h}=\lim _{h \rightarrow 0} \frac{-h}{h}=-1 \\
& \lim _{\text {So se }-2+h<0}=\frac{|h|}{h}=\lim _{h \rightarrow 0^{-}}-\frac{-h}{h}=-1 \\
& f^{\prime}(0)= \lim _{h \rightarrow 0} \frac{|h|}{h} \text { DNE since } \\
& \lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=1
\end{aligned}
$$

So f is not differentiable at $x=0$. \Rightarrow there is no tangent line at

$$
x=0 \text {. }
$$

Besides corners, other behaviors can prevent the existence of a derivative at a point.

- Discontinuity:

If f is not continuous at x_{0}, f is not differentiable at x_{0}. Said differently: if $f^{\prime}\left(x_{0}\right)$ exists, f must be continuous at x_{0}.

- Vertical tangent:

If the tangent at x_{0} is vertical, it has no slope, so $f^{\prime}\left(x_{0}\right)$ DUE. Example: $y=x^{1 / 3}$ at $x=0$.

- Cusp:

Slope goes to ∞ on one side and $-\infty$ on the other.
Example: $y=x^{2 / 3}$ at $x=0$.
5) Is $f(x)=\left\{\begin{array}{ll}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x=0 \\ 0 & \text { if } x \neq 0\end{array}\right.$ differentiable at $x=0$?

$$
\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h^{2} \sin \left(\frac{1}{h}\right)-0}{h}=\lim _{h \rightarrow 0} h \sin \left(\frac{1}{h}\right) .
$$

Since $-1 \leqslant \sin \left(\frac{1}{h}\right) \leqslant 1$ we have $-|h| \leqslant h \sin \left(\frac{1}{h}\right) \leqslant|h|$ for any $h \neq 0$. Also, $\lim _{h \rightarrow 0}-|h|=\lim _{h \rightarrow 0}|h|=0$. So by the

Squeeze Theorem, $\lim _{h \rightarrow 0} h \sin \left(\frac{1}{h}\right)=0$.

So f is differentiable at $x=0$ and $f^{\prime}(0)=0$
6) Calculate the following derivatives:

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}\right), \frac{d}{d x}(\sqrt{x}), \frac{d}{d x}\left(\frac{1}{x}\right) \\
& \begin{aligned}
\frac{d}{d x}\left(x^{2}\right) & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h=2 x . \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h}+\sqrt{x})}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{\sqrt{x}+\sqrt{x}}=\frac{1}{2 \sqrt{x}} . \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}=\lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
\frac{d}{d x}\left(\frac{1}{x}\right) & =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h}=\lim _{h \rightarrow 0} \frac{x-(x+h)}{h x(x+h)}=\lim _{h \rightarrow 0} \frac{-h}{h x(x+h)} \\
& =\lim _{h \rightarrow 0}-\frac{1}{x(x+h)}=-\frac{1}{x(x+0)}=-\frac{1}{x^{2}} .
\end{aligned}
\end{aligned}
$$

7) Suppose that f is continuous and $\lim _{x \rightarrow 2} \frac{f(x)-5}{x-2}=6$. Find an equation of the tangent line to the graph of f at $x=2$.

The only way $\lim _{x \rightarrow 2} \frac{f(x)-5}{x-2}$ is finite is if $\lim _{x \rightarrow 2} f(x)=5$ ie. $\quad f(2)=5$ (continuity).

Then $f^{\prime}(2)=6$.
So the tangent line to f at $x=2$:

- passes through $(2,5)]$ equation is $y-5=6(x-2)$
- has slope 6 or $y=6(x-2)+5$.

