Learning Goals

	•																
 Learning Goal Homework Proble														lems			
3.1.1 Estimate a derivative by visual inspection of a graph.											1-4, 23-28, 39-48.						
3.1.2 Compute a derivative as a limit of a difference quotient. Recognize a function as non-differentiable at a point when this limit does not exist.														5-36, 39-48.			
3.1.3 Interpret the derivative as the slope of a graph or of a tangent line. Find the equation of a line tangent to a graph using the derivative at a point.														5-22, 27, 28, 33-36.			
3.1.4	3.1.4 Interpret the derivative as an instantaneous rate of change.												23, 24, 29-32.				
 Lear	Learning Goal												Homework Problems				
3.2.1 Understand Leibniz notation for derivatives.												7-12, 19-22.					
3.2.2 Compute the derivative of a function using limits.													1-26, 37-42, 51-58, 60.				
3.2.3 Understand how the derivative of a function f relates to the graph of f . Recognize a function as non-differentiable at a point based on the behavior of its graph.													27-32, 34-36, 45-54, 63.				
3.2.4	3.2.4 Compute the one-sided derivative of a function at a point using													37-42, 45-50, 63.			
one-sided limits. Use one-sided limits and continuity properties to determine whether a function is differentiable at a certain point.																	
	3.2.5 Answer conceptual questions involving differentiation.											55-60, 63.					

2) For
$$f(x) = \frac{6}{x-1}$$
, find $f'(4)$ and equations of the tangent and normal lines to the graph of f at $x=4$.
 $f'(4) = \lim_{h \to 0} \frac{f(4+h) - f(4)}{h} = \lim_{h \to 0} \frac{6}{h-2} \frac{1}{(4+h)} = \frac{1}{h} \frac{6}{h+h} - \frac{2}{h} = \frac{2}{h} \frac{6}{h} \frac{6}{h+h} - \frac{2}{h} = \frac{2}{h} \frac{1}{h+h} = \frac{2}{h} \frac{1}{h} \frac{1}{h+h} = \frac{2}{h} \frac{1}{h} \frac{1}{h+h} \frac{1}{h} \frac{1}{$

3) Suppose that
$$f(t) = position of an object moving
along an axis in ft, t in sec.
f'(t) = instantaneous velocity of the object in ft/sec.
Suppose f' is graphed below.
2 f'(t) $y=f'(t)$
The object moves forward
when $f'(t) > 0 = (0,3), (S,6)$
Moves backward when $f'(t) < 0 = (0,3), (S,6)$
Moves backward when $f'(t) < 0 = (0,3), (S,6)$.
The object is stopped when $f'(t) = 0 = (3,4)$ and $t = 5.5$.
The object is stopped when $f'(t) = 0 = (3,4)$ and $t = 5.5$.
The object decelerates when f' is increasing $(0,2), (S,6)$.
The object decelerates when f' is decreasing $(2,3), (4,5)$.
The object $\frac{1}{2} + \frac{1}{2} + \frac$$$

+

_

_

_

_

+

Squeeze Theorem,
$$\lim_{h\to 0} h\sin\left(\frac{1}{h}\right) = 0.$$
So f is differentiable at $x=0$ and $f'(0) = 0$
6.) Calculate the following derivatives:
 $\frac{d}{dx}(x^{2})$, $\frac{d}{dx}(J\bar{x})$, $\frac{d}{dx}(\frac{1}{x})$
 $\frac{d}{dx}(x^{2})$, $\frac{d}{dx}(J\bar{x})$, $\frac{d}{dx}(\frac{1}{x})$
 $\frac{d}{dx}(x^{2}) = \lim_{h\to 0} \frac{(x+h)^{2}-x^{2}}{h} = \lim_{h\to 0} \frac{x^{2}+2xh+h^{2}-x^{2}}{h} = \lim_{h\to 0} \frac{2xh+h^{2}}{h}$
 $= \lim_{h\to 0} \frac{x+h}{h} = \frac{2x}{2x}$.
 $\frac{d}{dx}(J\bar{x}) = \lim_{h\to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \frac{\sqrt{x+h} + f\bar{x}}{h} = \lim_{h\to 0} \frac{x+h-x}{h(\sqrt{x+h} + 5\bar{x})}$
 $= \lim_{h\to 0} \frac{h}{h(\sqrt{x+h} + f\bar{x})} = \lim_{h\to 0} \frac{1}{h(\sqrt{x+h} + f\bar{x})} = \lim_{h\to 0} \frac{1}{h(\sqrt{x+h} + 5\bar{x})}$
 $= \lim_{h\to 0} \frac{h}{h(\sqrt{x+h} + f\bar{x})} = \lim_{h\to 0} \frac{x-(x+h)}{h(x+h)} = \lim_{h\to 0} \frac{-h}{hx(x+h)}$
 $= \lim_{h\to 0} \frac{1}{x(x+h)} = -\frac{1}{x(x+0)} = -\frac{1}{x^{2}}$.
7.) Suppose that f is continuous and $\lim_{x\to 1} \frac{f(x)-S}{x-2} = 6$.
Find an equation of the tangent time to the graph of f at $x = 2$.
The only way $\lim_{x\to 2} \frac{f(x)-S}{x-2}$ is finite is if $\lim_{x\to 1} f(x) = 5$

i.e. f(2)=5 (continuity).

Then f'(a) = 6. So the tangent line to fat x=2: • passes through (2,5) equation is y-5 = 6(x-2)• has slope 6 or y = 6(x-2)+5.