Learning Goals

Lear	rning (ioal										Hon	ieworl	k Prot	olems		
3.10.1 Solve related rates problems in which variables are related by a given equation.												1-10, 13-19, 29, 35.					
3.10.2 Solve related rates problems using familiar geometric or trigonometric identities.														11, 12, 20-28, 30-34, 36-47.			

Conceptual introduction: imagine you are inflating a spherical balloon. Both the volume V and radius r are changing over time : V and r are both functions at the time t.
at the time t. V and r are both functions at the time t.
thowever, the variables V and r are not independent: they are related by the equation.

$$V = \frac{4}{3} \text{ tr} r^3$$
.
Therefore, the rates af change $\frac{dV}{dt}$ and $\frac{dr}{dt}$ are also related.
 $V = \frac{4}{3} \text{ tr} r^3$.
Therefore, the rates af change $\frac{dV}{dt} = 4 \text{ tr} (3r^{\pm}) \frac{dr}{dt}$
 $\frac{dV}{dt} = 4 \text{ tr} (3r^{\pm}) \frac{dr}{dt}$
 $\frac{dV}{dt} = 4 \text{ tr} (3r^{\pm}) \frac{dr}{dt}$
The rates of change $\frac{dV}{dt} = 4 \text{ tr} (3r^{\pm}) \frac{dr}{dt}$
 $\frac{dV}{dt} = 4 \text{ tr} (3r^{\pm}) \frac{dr}{dt}$
The rates of change $\frac{dV}{dt} = 4 \text{ tr} (3r^{\pm}) \frac{dr}{dt}$
 $\frac{dV}{dt} = 4 \text{ tr} (3r^{\pm}) \frac{dr}{dt}$
The rates of change $\frac{dV}{dt} = 4 \text{ tr} (3r^{\pm}) \frac{dr}{dt}$
The rates of change $\frac{dV}{dt} = 4 \text{ tr} (3r^{\pm}) \frac{dr}{dt}$
The rates of change $\frac{dV}{dt} = 4 \text{ tr} (3r^{\pm}) \frac{dr}{dt}$
The rates of change $\frac{dV}{dt} = 4 \text{ tr} (3r^{\pm}) \frac{dr}{dt}$
The rates of change $\frac{dV}{dt} = 4 \text{ tr} \frac{dr}{dt}$
Examples : 1) The inflating balloon situation above, assume that when the radius is 2 in, the volume increases at 4 in³/sec. Find the rate of which the radius changes of that time.
• Write information $\frac{V}{dt} = 4 \text{ tr} \frac{3}{dt}$
• Write information $\frac{V}{dt} = 4 \text{ tr} \frac{3}{dt}$

• Substitute information into equations:

$$\begin{cases} V = \frac{4}{3}\pi(\lambda)^{3} \\ 3 \\ 4 = 4\pi (\lambda)^{2} \frac{dr}{dt} \end{cases}$$

• Solve for goal, here $\frac{dr}{dt}$:

$$4 = 4\pi \left(\lambda\right)^2 \frac{dr}{dt} \Rightarrow \frac{dr}{dt} = \frac{1}{4\pi} \frac{\ln sec}{100} \simeq 0.083 \frac{\ln sec}{1000}$$

Steps to solve related rates problem:

• <u>Step 1</u>: draw a picture and name variables • <u>Step 2</u>: write down relations between variables • <u>Step 3</u>: use implicit differentiation to differentiate relations with respect to time t and get relations between rates of change. Step 4: substitute given information into all relations • <u>Step 5</u>: solve for the goal

/!\ · Do NOT substitute in the value of any non-constant variable before differentiating

Always include units in final answer

2) A ladder of length 10 ft is leaning against a wall. The bottom of the ladder slides away from the wall at 2 ft/sec. How fast is the top of the ladder sliding down the wall when the top is 8 ft from the ground? • <u>Step 1</u>: draw a picture and name variables <u>Step 2</u>: write down relations Ty ladder between variables. $x^{2} + y^{2} = 10^{2} = 100$ × groun d <u>Step 3</u>: differentiate relations with respect to time t $\frac{d}{dt} \left(\begin{array}{c} x^{2} + y^{2} = 100 \\ 2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0 \end{array} \right)$ <u>Step 4</u>: substitute given information into all relations $\begin{cases} x^{2} + y^{2} = 100 \\ 2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0 \\ \frac{dx}{dt} = 2 \end{cases} \qquad \begin{cases} x^{2} + 8^{2} = 100 \\ y = 8 \\ \frac{dx}{dt} = 2 \end{cases}$ • <u>Step 5</u>: solve for the goal, here <u>dy</u>. $\begin{cases} x^{2} + 64 = 100 \rightarrow x^{2} = 36 \rightarrow x = 6 \quad (x > 0) \\ 4x + 16 \frac{dy}{dt} = 0 \rightarrow 4 \cdot 6 + 16 \frac{dy}{dt} = 0 \rightarrow \frac{dy}{dt} = -\frac{24}{16} \end{cases}$

- - $\frac{dy}{dt} = \frac{3}{2}$ ft/sec

3) An object is falling straight down, tracked by a radar positioned 150 ft away from the impact point. When the object is 300 ft in the air, it is falling at lo m/sec. How fast is the viewing angle of the radar changing at that time ? O daject Relations: h $\frac{d}{dt}$ $\frac{d}{dt}$ $\frac{1}{150}$ $\frac{h}{150}$ \frac{h} radar $\begin{cases} \tan(\theta) = \frac{h}{150} \\ \sec(\theta)^2 \frac{d\theta}{dt} = \frac{1}{150} \frac{dh}{dt} \\ \frac{dh}{dt} = \frac{10}{150} \frac{dh}{dt} \\ \frac{dh}{dt} = \frac{10}{150} \frac{dh}{dt} \\ \frac{dh}{dt} = \frac{10}{150} \frac{d\theta}{dt} = -\frac{10}{150} \\ \frac{d\theta}{dt} = -\frac{10}{150} \frac{d\theta}{dt} = -\frac{10}{150} \\ \frac{d\theta}{dt} = -\frac{10}{150} \frac{d\theta}{dt} = -\frac{10}{150} = -\frac{1}{15} \\ \frac{d\theta}{dt} = -\frac{10}{150} \frac{d\theta}{dt} = -\frac{10}{150} = -\frac{1}{15} \\ \frac{d\theta}{dt} = -\frac{10}{150} \frac{d\theta}{dt} = -\frac{10}{150} = -\frac{1}{15} \\ \frac{d\theta}{dt} = -\frac{10}{150} \frac{d\theta}{dt} = -\frac{10}{150} = -\frac{1}{15} \\ \frac{d\theta}{dt} = -\frac{10}{150} \frac{d\theta}$ Now we solve for do $\int \tan(\theta) = 2 \longrightarrow \sec(\theta)^2 = 1 + \tan(\theta)^2 = 1 + 2^2 = 5$ $\int_{\operatorname{Sec}(9)^2} \frac{\mathrm{d}\theta}{\mathrm{d}t} = -\frac{1}{15} \rightarrow 5 \frac{\mathrm{d}\theta}{\mathrm{d}t} = -\frac{1}{15}$ $\frac{d\theta}{dt} = -\frac{1}{75} rad/sec$ Alternative way to solve: $\Theta = \arctan\left(\frac{h}{150}\right)$ $= \frac{d\theta}{dt} = \frac{1}{\sqrt{1 + (\frac{n}{150})^2}} \frac{1}{150} \frac{dh}{dt}$ $= \frac{1}{\sqrt{1+(\frac{300}{100})^2}}, \frac{1}{150}, (-10) = \frac{1}{75} \text{ rad } \frac{1}{82}.$

5) A person 6 ft tall is standing 15 ft from a point P directly beneath a falling lantern. When the lantern is loft above the ground, it is falling at 5 ft / sec. At what rate is the person's shadow changing at that time? Similar triangles: L lantern h $\frac{d}{dt}$ $\frac{h}{6} = \frac{\ell + 1S}{\ell} = 1 + \frac{15}{\ell}$ $\frac{1}{6} \frac{dh}{dt} = -\frac{15}{\ell^2} \frac{d\ell}{dt}$ 15 $\int \frac{h}{G} = 1 + \frac{15}{\ell}$ h = 10 $\int \frac{h}{G} = 1 + \frac{15}{\ell}$ $\int \frac{h}{G} = 1 + \frac{15}{\ell}$ We now solve for the goal, here de $\int \frac{5}{3} = 1 + \frac{15}{\ell} \longrightarrow \frac{15}{\ell} = \frac{2}{3} \longrightarrow \ell = \frac{45}{2}$ $-\frac{5}{6} = -\frac{15}{\ell^2} \frac{d\ell}{dt} \longrightarrow \frac{d\ell}{dt} = \frac{5\ell^2}{6 \cdot 15} = \frac{45^2 \cdot 5}{2^2 \cdot 6 \cdot 15}$ $\frac{d\ell}{dt} = \frac{225}{8} \text{ ft/sec}$

6) The total surface area of a cube is changing at a rate of 12 in²/sec when the volume is 1,000 in³. At what rate is the volume changing at that time? Surface area : S = 6x² $Volume: V = x^3$ $\frac{d}{dt} \int \frac{S}{ds} = \frac{1}{2} \times \frac{dx}{dt} \qquad \frac{d}{dt} \int \frac{V}{dV} = \frac{x^3}{3x^2 dx}$ $\frac{V = 1000}{\frac{dS}{dt} = 12}$, $\begin{cases} S = 6x^{2} \\ 1000 = x^{3} \\ 12 = 12x \frac{dx}{dt} \\ \frac{dV}{dt} = 3x^{2} \frac{dx}{dt} \\ \frac{dV}{dt} = \frac{3x^{2} dx}{dt} \end{cases}$ $\int \frac{S = 6x^{2}}{V = x^{3}}$ $\int \frac{dS}{dt} = 12x \frac{dx}{dt}$ $\left(\begin{array}{c} \frac{dV}{dt} = 3x^2 \frac{dx}{dt} \\ \frac{dt}{dt} = \frac{3}{dt} \frac{dx}{dt} \\ \frac{dt}{dt} = \frac{3}{dt} \frac{dx}{dt}$ We now solve for <u>dv</u> $\begin{cases} S = 6x^{2} \\ 1000 = x^{3} \rightarrow x = 10 \\ 12 = 12x \frac{dx}{dt} \rightarrow \frac{dx}{dt} = \frac{1}{10} \\ \frac{dx}{$ $\frac{dV}{dt} = 30 \text{ in}^3/\text{sec}$ Remark: we can also solve this problem by writing a relation between V and S eliminating the variable x. $\begin{array}{c} V = x^{3} \\ S = 6x^{2} \end{array}$ $\begin{array}{c} S = 6 \\ \end{array}$ $\frac{dS}{dt} = 6 \sqrt{\frac{2}{3}} \sqrt{\frac{1/3}{3}} \frac{dV}{dt} = \frac{4}{\sqrt{1/3}} \frac{dV}{dt} = \frac{1}{\sqrt{1/3}} \frac{1}{\sqrt$ $= \frac{dV}{dt} = \frac{120}{4} = \frac{30}{10} \frac{10^3}{22}.$