Related Rates

Learning Goals

Learning Goal
Homework Problems
3.10.1 Solve related rates problems in which variables are related by a given equation.
3.10.2 Solve related rates problems using familiar geometric or trigonometric identities.

1-10, 13-19, 29, 35.

11, 12, 20-28, 30-34, 36-47.

Conceptual introduction: imagine you are inflating a spherical balloon. Both the volume V and radius r are changing
 over time: V and r are both functions of the time t.

However, the variables V and r are not independent: they are related by the equation:

$$
V=\frac{4}{3} \pi r^{3}
$$

Therefore, the rates of change $\frac{d V}{d t}$ and $\frac{d r}{d t}$ are also related.

$$
V=\frac{4}{3} \pi r^{3} \xrightarrow[\substack{\text { implicit } \\ \text { diff. }}]{\frac{d}{d t}} \frac{d V}{d t}=\frac{4}{3} \pi\left(3 r^{2}\right) \frac{d r}{d t}
$$

$$
\frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}
$$

equation relating the rates of change

In a related rates problem, we are given a rate of change and we look for another one.

Examples: 1) In the inflating balloon situation above, assume that when the radius is 2 in, the volume increases at $4 \mathrm{in}^{3} / \mathrm{sec}$. Find the rate at which the radius changes at that time.

- Write equations: $\left\{\begin{array}{l}V=\frac{4}{3} \pi r^{3} \\ \frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}\end{array}\right.$
- Write information: $\left\{\begin{array}{l}r=2 \\ \frac{d V}{d t}=4\end{array}\right.$
- Substitute information into equations:

$$
\left\{\begin{array}{l}
V=\frac{4}{3} \pi(2)^{3} \\
4=4 \pi(2)^{2} \frac{d r}{d t}
\end{array}\right.
$$

- Solve for goal, here $\frac{d r}{d t}$:

$$
4=4 \pi(2)^{2} \frac{d r}{d t} \Rightarrow \frac{d r}{d t}=\frac{1}{4 \pi} \mathrm{in} / \mathrm{sec} \simeq 0.083 \mathrm{in} / \mathrm{sec}
$$

Steps to solve related rates problem:

- Step 1: draw a picture and name variables
- Step 2: write down relations between variables
- Step 3: use implicit differentiation to differentiate relations with respect to time + and get relations between rates of change.
- Step 4: substitute given information into all relations
- Step 5: solve for the goal
!. Do not substitute in the value of any non-constant variable before differentiating
- Always include units in final answer

2) A ladder of length lo ft is leaning against a wall. The bottom of the ladder slides away from the wall at $2 \mathrm{ft} / \mathrm{sec}$. How fast is the top of the ladder sliding down the wall when the top is 8 ft from the ground?

- Step 1: draw a picture and name variables

- Step 2: write down relations between variables.

$$
x^{2}+y^{2}=10^{2}=100
$$

- Step 3: differentiate relations with respect to time +

$$
\frac{d}{d t}\left\{\begin{array}{l}
x^{2}+y^{2}=100 \\
2 x \frac{d x}{d t}+2 y \frac{d y}{d x}=0
\end{array}\right.
$$

- Step 4: substitute given information into all relations

$$
\left\{\begin{array} { l }
{ x ^ { 2 } + y ^ { 2 } = 1 0 0 } \\
{ 2 x \frac { d x } { d t } + 2 y \frac { d y } { d t } = 0 }
\end{array} \begin{array} { l }
{ \frac { y = 8 } { d x } = 2 }
\end{array} \quad \left\{\begin{array}{l}
x^{2}+8^{2}=100 \\
2 x(2)+2(8) \frac{d y}{d t}=0
\end{array}\right.\right.
$$

- Step 5: solve for the goal, here $\frac{d y}{d t}$.

$$
\left\{\begin{array}{l}
x^{2}+64=100 \rightarrow x^{2}=36 \rightarrow x=6 \quad(x>0) \\
4 x+16 \frac{d y}{d t}=0 \rightarrow 4.6+16 \frac{d y}{d t}=0 \rightarrow \frac{d y}{d t}=-\frac{24}{16} \\
\\
\frac{d y}{d t}=-\frac{3}{2} \mathrm{ft} / \mathrm{sec}
\end{array}\right.
$$

3) An object is falling straight down, tracked by a radar positioned 150 ft away from the impact point. When the object is 300 ft in the air, it is falling at $10 \mathrm{~m} / \mathrm{sec}$. How fast is the viewing angle of the radar changing at that time?

$$
\begin{aligned}
& \text { object Relations: } \\
& d \quad \tan (\theta)=\frac{h}{150} \\
& \sec (\theta)^{2} \frac{d \theta}{d t}=\frac{1}{150} \cdot \frac{d h}{d t} \\
& \left\{\begin{array} { l }
{ \operatorname { t a n } (\theta) = \frac { h } { 1 5 0 } } \\
{ \operatorname { s e c } (\theta) ^ { 2 } \frac { d \theta } { d t } = \frac { 1 } { 1 5 0 } \frac { d h } { d t } \xrightarrow [\frac { d h } { d t } = - 1 0] { \text { fasting } } }
\end{array} \quad \left\{\begin{array}{l}
\tan (\theta)=\frac{300}{150}=2 \\
\sec (\theta)^{2} \frac{d \theta}{d t}=-\frac{10}{150}=-\frac{1}{15} .
\end{array}\right.\right.
\end{aligned}
$$

Now we solve for $\frac{d \theta}{d t}$.

$$
\left\{\begin{aligned}
\tan (\theta)=2 \rightarrow \sec (\theta)^{2}= & 1+\tan (\theta)^{2}=1+2^{2}=5 \\
\sec (\theta)^{2} \frac{d \theta}{d t}=-\frac{1}{15} \rightarrow & 5 \frac{d \theta}{d t}=-\frac{1}{15} \\
& \frac{d \theta}{d t}=-\frac{1}{75} \mathrm{rad} / \mathrm{sec}
\end{aligned}\right.
$$

Alternative way to solve: $\theta=\arctan \left(\frac{n}{150}\right)$

$$
\begin{aligned}
\Rightarrow \frac{d \theta}{d t} & =\frac{1}{\sqrt{1+\left(\frac{n}{150}\right)^{2}}} \cdot \frac{1}{150} \cdot \frac{d h}{d t} \\
& =\frac{1}{\sqrt{1+\left(\frac{300}{150}\right)^{2}}} \cdot \frac{1}{150} \cdot(-10)=-\frac{1}{75} \mathrm{rad} / \mathrm{sec} .
\end{aligned}
$$

4) Water runs out of a conical tank of height 10 ft and radius 5 ft at a rate of $9 \mathrm{ft}^{3} / \mathrm{min}$. How fast is the water level decreasing when there are $18 \pi \mathrm{ft}^{3}$ of water left in the tank?

We need a relation between the water level h and the volume of water V.

$$
V=\frac{1}{3} \pi r^{2} h
$$

Similar triangles: $\frac{r}{h}=\frac{5}{10} \Rightarrow r=\frac{h}{2}$.

$$
10\left\{\begin{array}{l}
n \\
n
\end{array}\right.
$$

So

$$
\begin{aligned}
& 0 \quad V=\frac{1}{3} \pi\left(\frac{h}{2}\right)^{2} h=\frac{\pi}{12} h^{3} \\
& \frac{d}{d t}\left(\frac{d V}{d t}=\frac{\pi}{12}\left(3 h^{2}\right) \frac{d h}{d t}=\frac{\pi}{4} h^{2} \frac{d h}{d t} .\right. \\
& \left\{\begin{array} { l }
{ V = \frac { \pi } { 1 2 } h ^ { 3 } } \\
{ \frac { d V } { d t } = \frac { \pi } { 4 } h ^ { 2 } \frac { d h } { d t } \quad \frac { d V } { d t } = - 9 }
\end{array} \quad \left\{\begin{array}{l}
18 \pi=\frac{\pi}{12} h^{3} \\
-9=\frac{\pi}{4} h^{2} \frac{d h}{d t}
\end{array}\right.\right.
\end{aligned}
$$

We now solve for the goal, here $\frac{d h}{d t}$.

$$
\left\{\begin{aligned}
& 18 \pi=\frac{\pi}{12} h^{3} \rightarrow h^{3}=18 \cdot 12=216 \rightarrow h=6 \\
&-9=\frac{\pi}{4} h^{2} \frac{d h}{d t} \rightarrow-9=\frac{\pi}{4}(6)^{2} \frac{d h}{d t} \rightarrow \frac{d h}{d t}
\end{aligned}\right)=-\frac{9 \cdot 4}{\pi \cdot 6^{2}} .
$$

5) A person 6 ft tall is standing 15 ft from a point P directly beneath a falling lantern. When the lantern is lo ft above the ground, it is falling at $5 \mathrm{ft} / \mathrm{sec}$. At what rate is the person's shadow changing at that time?

lantern
Similar triangles:

$$
\begin{gathered}
\frac{d}{d t} \int \frac{h}{6}=\frac{l+15}{l}=1+\frac{15}{l} \\
\frac{1}{6} \cdot \frac{d h}{d t}=-\frac{15}{l^{2}} \cdot \frac{d l}{d t}
\end{gathered}
$$

$$
\left\{\begin{array} { l }
{ \frac { h } { 6 } = 1 + \frac { 1 5 } { l } } \\
{ \frac { 1 } { 6 } \frac { d h } { d t } = - \frac { 1 5 } { l ^ { 2 } } \frac { d l } { d t } }
\end{array} \xrightarrow [\frac { d h } { d t } = - 5] { } \quad \left\{\begin{array}{l}
\frac{10}{6}=1+\frac{15}{l} \\
-\frac{5}{6}=-\frac{15}{l^{2}} \frac{d l}{d t}
\end{array}\right.\right.
$$

We now solve for the goal, here $\frac{d l}{d t}$.

$$
\left\{\begin{array}{l}
\frac{5}{3}=1+\frac{15}{l} \rightarrow \frac{15}{l}=\frac{2}{3} \rightarrow l=\frac{45}{2} \\
-\frac{5}{6}=-\frac{15}{l^{2}} \frac{d l}{d t} \rightarrow \frac{d l}{d t}=\frac{5 l^{2}}{6 \cdot 15}=\frac{45^{2} \cdot 5}{2^{2} \cdot 6 \cdot 15} \\
\frac{d l}{d t}=\frac{225}{8} \mathrm{ft} / \mathrm{sec}
\end{array}\right.
$$

6) The total surface area of a cube is changing at a rate of $12 \mathrm{in}^{2} / \mathrm{sec}$ when the volume is $1,000 \mathrm{in}^{3}$. At what rate is the volume changing at that time?

Surface area: $S=6 x^{2}$
Volume: $V=x^{3}$

$$
\frac{d}{d t}\left\{\begin{array}{l}
S=6 x^{2} \\
\frac{d S}{d t}=12 x \frac{d x}{d t}
\end{array} \quad \frac{d}{d t} \begin{array}{l}
V=x^{3} \\
\frac{d V}{d t}=3 x^{2} \frac{d x}{d t}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
S=6 x^{2} \\
V=x^{3} \\
\frac{d S}{d t}=12 x \frac{d x}{d t} \\
\frac{d V}{d t}=3 x^{2} \frac{d x}{d t}
\end{array}\right.
$$

$$
\xrightarrow{V=1000} \frac{d S}{d t}=12 \quad\left\{\begin{array}{l}
S=6 x^{2} \\
1000=x^{3} \\
12=12 x \frac{d x}{d t} \\
\frac{d V}{d t}=3 x^{2} \frac{d x}{d t}
\end{array}\right.
$$

We now solve for $\frac{d v}{d t}$.

$$
\left\{\begin{array}{l}
S=6 x^{2} \\
1000=x^{3} \rightarrow x=10 \\
12=12 x \frac{d x}{d t} \rightarrow \frac{d x}{d t}=\frac{1}{10} . \\
\frac{d V}{d t}=3 x^{2} \frac{d x}{d t} \longrightarrow \frac{d V}{d t}=3 \cdot 10^{2} \cdot \frac{1}{10} \\
\\
\frac{d V}{d t}=30 \mathrm{in}^{3} / \mathrm{sec} .
\end{array}\right.
$$

Remark: we can also solve this problem by writing a relation between V and S eliminating the variable x.

$$
\begin{aligned}
& \left.\begin{array}{l}
V=x^{3} \\
S=6 x^{2}
\end{array}\right\} \quad \begin{array}{l}
S=6 V^{4 / 3} \\
\frac{d S}{d t}=6 \frac{2}{3} V^{-1 / 3} \frac{d V}{d t}=\frac{4}{V^{1 / 3}} \frac{d V}{d t} \xrightarrow[\frac{d S}{d t}=12]{V=1000} \\
\end{array} \quad \begin{array}{l}
12=\frac{4}{1000^{1 / 3}} \frac{d V}{d t} \\
\end{array} \quad \frac{d V}{d t}=\frac{120}{4}=30 \mathrm{in}^{3} / \mathrm{sec} .
\end{aligned}
$$

