Linearization and

Learning Goals

Learning Goal	Homework Problems
3.11.1 Estimate the value of a function using an appropriate linearization.	$1-18,64-74$.
3.11.2 Compute differentials. Use them to estimate the error that propagates through a computation.	$19-64,69-74$.

Conceptual introduction:

Let f be a differentiable function at $x=a$. Near $x=a$, the graph of f is very close to the tangent line at $x=a$.

$$
\begin{aligned}
& L(x)=f^{\prime}(a)(x-a)+f(a) \\
& \quad \text { linearization of } f \text { at } x=a
\end{aligned}
$$

We can use $L(x)$ to approximate $f(x)$ when x is close to a.
Standard linear approximation centered at a :

$$
f(x) \approx L(x) \text { if } x \text { close to a }
$$

Equivalently, we can state the standard linear approximation at a as :

$$
\begin{aligned}
& f(x) \approx f^{\prime}(a)(x-a)+f(a) \\
\text { or } & f(x)-f(a) \approx f^{\prime}(a)(x-a)
\end{aligned}
$$

or $\Delta f \approx f^{\prime}(a) \Delta x$ if Δx is small.

Remark: in fact, $L(x)$ is the best linear approximation of f near $x=a$.

Examples: 1) Find the linearization of $f(x)=\sqrt{x}$ at $x=1$ and use it to estimate $\sqrt{1.06}$.

$$
\begin{array}{lll}
L(x)=f^{\prime}(1)(x-1)+f(1) & \text { with } & f(1)=\sqrt{1}=1 \\
L(x)=\frac{1}{2}(x-1)+1 & & f^{\prime}(1)=\left.\frac{d}{d x} \sqrt{x}\right|_{x=1}=\frac{1}{\left.2 \sqrt{x}\right|_{x=1}}=\frac{1}{2} .
\end{array}
$$

Linear approximation: $\quad \sqrt{1.06}=f(1.06)$

$$
\approx L(1.06)=\frac{1}{2}(1.06-1)+1
$$

$$
\sqrt{1.06} \approx 1.03
$$

(Actual value: $\sqrt{1.06}=1.02956301 \ldots$)
2) Use linear approximation to estimate $\sqrt[3]{9}$

Here $f(x)=\sqrt[3]{x}=x^{1 / 3}$

$$
f^{\prime}(x)=\frac{1}{3} x^{-2 / 3} .
$$

To find where to center our approximation, we look for a value of a close to 9 for which we know $f(a)$ and $f^{\prime}(a)$ exactly.
\rightarrow Here $a=8$ will do.

$$
\left.\begin{array}{rl}
f(8)=8^{1 / 3}=2 \\
f^{\prime}(8)=\frac{1}{3} 8^{-2 / 3}=\frac{1}{12}
\end{array}\right] \rightarrow L(x)=f^{\prime}(8)(x-8)+f(8)
$$

So

$$
\begin{aligned}
\sqrt[3]{9} & =f(9) \\
& \approx L(9)=\frac{1}{12}(9-8)+2 \\
\sqrt[3]{9} & \approx \frac{25}{12} .
\end{aligned}
$$

3) Use linear approximation to estimate $\ln (0.997)$.

Here $f(x)=\ln (x), \quad f^{\prime}(x)=\frac{1}{x}$
We can take $a=1$ as our center since it is close to 0.997 and we know $f(1)=\ln (1)=0, \quad f^{\prime}(1)=\frac{1}{1}=1$.

$$
L(x)=f^{\prime}(1)(x-1)+f(1)=x-1 .
$$

So $\quad \ln (0.997)=f(0.997) \approx L(0.997)=0.997-1$

$$
\ln (0.997) \approx-0.003
$$

4) Use linear approximation to estimate $\tan \left(\frac{\pi}{4}-0.08\right)$

Here $f(x)=\tan (x), f^{\prime}(x)=\sec (x)^{2}$.
We can take $a=\frac{\pi}{4}$ since it is close to $\frac{\pi}{4}-0.08$ and we know the exact values of $f\left(\frac{\pi}{4}\right)=\tan \left(\frac{\pi}{4}\right)=1$ and $f^{\prime}\left(\frac{\pi}{4}\right)=\sec \left(\frac{\pi}{4}\right)^{2}=(\sqrt{2})^{2}=2$.

$$
\begin{aligned}
L(x) & =f^{\prime}\left(\frac{\pi}{4}\right)\left(x-\frac{\pi}{4}\right)+f\left(\frac{\pi}{4}\right) \\
& =2\left(x-\frac{\pi}{4}\right)+1
\end{aligned}
$$

So $\quad \tan \left(\frac{\pi}{4}-0.08\right)=f\left(\frac{\pi}{4}-0.08\right) \approx L\left(\frac{\pi}{4}-0.08\right)=2(-0.08)+1$ $\tan \left(\frac{\pi}{4}-0.08\right) \approx 0.84$.
5) Suppose the tangent line to f at $x=1$ is $y=2 x+3$.

Estimate:
a) $f(1.04)$
b) $g(0.96)$ where $g(x)=2 f(x) e^{1-x}$.
a) The linearization of f at $x=1$ is $L(x)=2 x+3$

So $f(1.04)=L(1.04)=2(1.04)+3=5.08$
b)

$$
\begin{aligned}
g(1) & =2 f(1) e^{1-1}=2 \cdot 5 \cdot e^{0}=10 . \\
g^{\prime}(1) & =\frac{d}{d x}\left(2 f(x) e^{1-x}\right)_{\mid x=1}=\left(2 f^{\prime}(x) e^{1-x}-2 f(x) e^{1-x}\right)_{\mid x=1} \\
& =2 f^{\prime}(1) e^{1-1}-2 f(1) e^{1-1}=4-10=-6 .
\end{aligned}
$$

So $L(x)=-6(x-1)+10$.

$$
\begin{aligned}
& g(0.96) \approx L(0.96)=-6(0.96-1)+10 \\
& g(0.96) \approx 10.24 .
\end{aligned}
$$

Differentials and errors:
The differential of f is $d f=f^{\prime}(x) d x$ where $d x$ is a new independent variable, and $d f$ depends on both x and $d x$.

Examples: if $y=x^{2}$, then $d y=2 x d x$
$y=\cos \left(e^{3 x}\right)$, then $d y=-3 \sin \left(e^{3 x}\right) e^{3 x} d x$
$s=2 t+t^{3}$, then $d s=\left(2+3 t^{2}\right) d t$
$u=w \sin (6 w)$, then $d u=(\sin (6 w)+6 w \cos (6 \omega)) d w$ etc.

Linear approximation: if $d x=\Delta x, \Delta \Delta \simeq d f=f^{\prime}(x) \Delta x$.

Intuitively, if tells us how sensitive the output of f is to a change in the input x - the greater $f^{\prime}(x)$ the more sensitive. We can use this idea to estimate errors propagating through a computation.

Errors: if x is measured with error Δx, then the propagated error is $\underbrace{\Delta f \approx \underbrace{f^{\prime}(x) \Delta x}_{\substack{\text { approximation } \\ \text { of the error }}}}_{\text {exact error }}$

Relative error: $\quad \frac{\Delta f}{f(x)} \approx \frac{f^{\prime}(x) \Delta x}{f(x)}$
Percentage error: $\quad \frac{\Delta f}{f(x)} \cdot 100 \approx \frac{f^{\prime}(x) \Delta x}{f(x)} .100$

Examples: 1) Suppose the side of a cube is measured at 2 cm with an error of $\pm 0.25 \mathrm{~cm}$. What is the propagated error in the computation of the volume?

$$
\begin{aligned}
& V=x^{3} \Rightarrow d V=3 x^{2} d x \\
& \Delta V \approx 3 x^{2} \Delta x \quad \underset{\begin{array}{c}
\text { ever in } \\
\text { eneasurement } \\
\text { of side }
\end{array}}{\Delta V \text { volume }}
\end{aligned}
$$

Relative error: $\frac{\Delta V}{V}=\frac{3}{2^{3}}=\frac{3}{8}=0.375$
Percentage error: $\frac{\Delta V}{V} \cdot 100=37.5 \%$.
2) In the example above, suppose we want an error of at most 10% in the measurement of the volume. What is the maximum percentage error that can be made measuring the side?

This time, we know $\frac{\Delta V}{V}=0.1$ and we want $\frac{\Delta x}{x}$.

We have $\Delta V \approx 3 x^{2} \Delta x$

$$
\begin{aligned}
\Rightarrow \Delta x & \approx \frac{\Delta V}{3 x^{2}} \\
\frac{\Delta x}{x} & \approx \frac{\Delta V}{3 x^{3}}=\frac{1}{3} \cdot \frac{\Delta V}{V}=\frac{0.1}{3}=0.0333 \ldots
\end{aligned}
$$

The maximum percentage error that can be made in the measurement of the side is 33.3%.
3) Suppose you stand 30 ft from a building and calculate the height of the building by measuring the elevation angle to the top. You measure 60°. How accurate must the measurement be to have an error of at most 1% on the height?

$$
h=30 \tan (\theta) \Rightarrow \quad d h=30 \sec (\theta)^{2} d \theta
$$

$$
\text { So } \Delta h \simeq 30 \sec (\theta)^{2} \Delta \theta \text {. }
$$

We know $\frac{\Delta h}{h}=0.01$ and we want $\frac{\Delta \theta}{\theta}$.

$$
\begin{aligned}
& \Delta h=0.01 \cdot h=0.01 \cdot 30 \tan (\theta)=0.01 \cdot 30 \tan \left(\frac{\pi}{3}\right)=0.3 \sqrt{3} \\
& S_{0} \quad \Delta \theta=\frac{\Delta h}{30 \sec (\theta)^{2}}=\frac{0.3 \sqrt{3}}{30 \cdot 4}=0.0025 \sqrt{3} \mathrm{rad} . \\
& \frac{\Delta \theta}{\theta}=\frac{0.0025 \sqrt{3}}{\frac{\pi}{3}}=0.00413 .
\end{aligned}
$$

The maximal error that can be made on the measurement of θ is 0.41%.

