Sectio	n 3.1	1		Lin	earis	tatio	20	and		

Differentials

Learning Goals

	Lear	ning (Goal										Hon	ieworl	k Proł	olems			
	3.11.1 Estimate the value of a function using an appropriate									1-18, 64-74. 19-64, 69-74.									
	linearization. 3.11.2 Compute differentials. Use them to estimate the error that																		
propagates through a computation.																			

Conceptual introduction:

$$f(x) = f(x)$$

Examples: 1) Find the linearization of
$$f(x) = \sqrt{x}$$
 at $x=1$
and use it to estimate $\sqrt{1.06}$.

$$L(x) = f'(1)(x-1) + f(1) \quad \text{with} \quad f'(1) = JT = 1 \\ f'(1) = \frac{1}{dx} \sqrt{x}|_{x=1} + \frac{1}{dx}|_{x=1} = \frac{1}{2}$$

$$L(x) = \frac{1}{dx}(x+1) + 1$$

Linear approximation: $\sqrt{1.06} = f(1.06)$
 $\approx L(1.06) = \frac{1}{2}(1.06-1) + 1$
 $\sqrt{1.06} \approx 1.03$.

(Actual value: $\sqrt{1.06} = 1.02956301...$)

A) Use linear approximation to estimate $\sqrt[3]{9}$
Here $f(x) = \sqrt[3]{x} = x'^{13}$
 $f'(x) = \frac{1}{3}x^{-4/3}$.

To find where to center our approximation, we look for
a value of a close to 9 for which we know $f(a)$
and $f'(a)$ exactly.

b Here $a \ge 8$ will do.
 $f(8) = 8^{1/3} = 2$
 $f'(8) = \frac{1}{3}8^{-4/3} = \frac{1}{12} = \frac{1}{12}(x-8) + 2$

So $\sqrt[3]{9} = f(9)$
 $\approx L(9) = \frac{1}{12}(9-8) + 2$

 $\sqrt[3]{9} \approx \frac{25}{14}$.

3) Use linear approximation to estimate In (0.997).

Here
$$f(x) = \ln(x)$$
, $f'(x) = \frac{1}{x}$
We can take a=1 as our center since it is close to
0.997 and we know $f(1) = \ln(1) = 0$, $f'(1) = \frac{1}{1} = 1$.
 $L(x) = f'(1)(x-1) + f(1) = x-1$.
So $\ln(0.997) = f(0.997) \approx L(0.997) = 0.997-1$
 $\ln(0.997) \approx -0.003$
4) Use linear approximation to estimate $\tan(\frac{\pi}{4} - 0.08)$

Here
$$f(x) = \tan(x)$$
, $f'(x) = \sec(x)^2$.
We can take $a = \frac{\pi}{4}$ since it is close to $\frac{\pi}{4} = 0.08$ and
we know the exact values of $f(\frac{\pi}{4}) = \tan(\frac{\pi}{4}) = 1$
and $f'(\frac{\pi}{4}) = \sec(\frac{\pi}{4})^2 = (\sqrt{2})^2 = 2$.
 $L(x) = f'(\frac{\pi}{4})(x - \frac{\pi}{4}) + f(\frac{\pi}{4})$
 $= 2(x - \frac{\pi}{4}) + 1$
So $\tan(\frac{\pi}{4} - 0.08) = f(\frac{\pi}{4} - 0.08) \simeq L(\frac{\pi}{4} - 0.08) = 2(-0.08) + 1$

 $\tan\left(\frac{\pi}{4}-0.08\right)\approx 0.84$

5) Suppose the tangent line to
$$f$$
 at $x=1$ is $y = 2x+3$.
Estimate: a) $f(1.04)$ b) $g(0.96)$ where $g(x) = 2 f(x)e^{1-x}$.

a) The linearization of
$$f$$
 at $x=1$ is $L(x) = 2x+3$
So $f(1.04) = L(1.04) = 2(1.04) + 3 = 5.08$

b)
$$g(1) = \lambda f(1)e^{1-1} = \lambda \cdot 5 \cdot e^{2} = 10.$$

 $g'(1) = \frac{d}{dx} (\lambda f(x)e^{1-x})_{|x=1} = (\lambda f'(x)e^{1-x} - \lambda f(x)e^{1-x})_{|x=1}$
 $= \lambda f'(1)e^{1-1} - \lambda f(1)e^{1-1} = 4 - 10 = -6.$
So $L(x) = -6(x-1) + 10.$
 $g(0.96) = L(0.96) = -6(0.96-1) + 10$
 $g(0.96) \approx 10.244$.

Examples: if
$$y = x^2$$
, then $dy = 2xdx$
 $y = \cos(e^{3x})$, then $dy = -3\sin(e^{3x})e^{3x}dx$
 $s = 2t + t^3$, then $ds = (2+3t^2)dt$
 $u = w\sin(6w)$, then $du = (\sin(6w) + 6w\cos(6w))dw$
etc.

Linear approximation: if
$$dx = bx$$
, $\Delta f \simeq df = f^{2}(x) \Delta x$.

Errors : 'if x	is measured	with error Δx ,	then the
propagated error	is Af	$\approx f'(x) \Delta x$	
	exact error	approximation	
		of the enter	
Relative error:	$\Delta f \approx f'$	x) <u>\x</u>	
	f(×) f	(×)	
Percentage empr:	<u>4</u> , 100 ~	f'(x)bx . (02	
	f(x)	+(×)	
Examples (1) Sug	nose the side	of a cube is	measured at
$\frac{c_{n}}{2}$ cm with an		25 cm lubat	is the
Oconcated arec	in the com	nuteboo of the	volume 7
propagaica enti		paranen af me	
$\sqrt{-x^3} \rightarrow d$	$(-3x^2 dx)$		
$AV = 2v^2 Av$	$-3.9^{2}.08$		
error in error in			
volume measure of side	- ment		
	ΔV 3	3 0 27 5	
Relative ensit:	\overline{V}^2 $\overline{2^3}^2$	8	
	AV		
rercentage entr:		π.5 7.	
		• • • • • • • • • • • • • • • • • • •	
2) In the exa	mple above,	suppose we wa	int an error
of at most lo	\int_{∂} 1Λ the m	easurement of th	ne volume,
What is the	maximum pe	ercentage error the	at can be
made measuring	g the side		
	, A\/		
This time, we	$know \Delta $	0.1 and we u	$xant \Delta x$,

V

X

We have
$$\Delta V \approx 3x^{2}\Delta x$$

 $\Rightarrow \Delta x \approx \frac{\Delta V}{3x^{3}}$
 $\Delta x \approx \frac{\Delta V}{3x^{3}} = \frac{1}{3}\frac{\delta V}{V} = \frac{0.1}{3} = 0.0333...$
The maximum percentage error that can be made in the measurement of the side is 33.3% .
3) Suppose you stand 30 ft from a building and calculate the height of the building by measuring the elevation angle to the top. You measure 60°. How accurate must the measurement be to have an error aff at most 1% on the height ?
 $h = 30 \tan(\theta) \Rightarrow dh = 30 \sec(\theta)^{2} d\theta$
 $h = 0.01 h = 0.01 30 \tan(\theta) = 0.01 30 \tan(\frac{\pi}{3}) = 0.3\sqrt{3}$
 $\Delta h = 0.01 h = 0.01 30 \tan(\theta) = 0.01 30 \tan(\frac{\pi}{3}) = 0.3\sqrt{3}$
 $\Delta h = 0.01 h = 0.01 30 \tan(\theta) = 0.01 30 \tan(\frac{\pi}{3}) = 0.3\sqrt{3}$
 $\Delta h = 0.025\sqrt{3} = 0.00413.$
The maximal error that can be made on the measurement of θ is 0.41% .