Rutgers University
Math 151

Section 3.11: Linear Approximations - Worksheet

1. Use a well-chosen linear approximation to estimate the following quantities.
(a) $\sqrt[3]{62}$
(c) $\sqrt{49.6}$
(e) $\cot \left(\frac{\pi}{6}+0.02\right)-\sqrt{3}$
(b) $e^{-0.8}$
(d) $\ln (1+5 \sin (0.06))$
(f) $\sqrt[4]{17}-\sqrt[4]{16}$
2. Suppose that f is a function such that $f(3)=-7$ and $f^{\prime}(3)=2$. Use a linear approximation to estimate the following quantities.
(a) $f(3.07)$
(b) [Advanced] $f\left(1+\cos (0.1)+e^{0.2}\right)$
3. Find the differential $d y$ of the following functions.
(a) $y=\arcsin \left(3 x^{2}\right)$
(c) $y=\csc (5 \theta)$
(e) $y=x^{\cos (2 x)}$
(b) $y=4 \sqrt[3]{x}-\frac{5}{x^{2}}+e^{3}$
(d) $y=5^{3-t^{2}}$
(f) $y=\sin \left(3 e^{-7 z}\right)$
4. The volume of a sphere is computed by measuring its diameter.
(a) Suppose that the diameter of the sphere is measured at 5 cm with a precision of 0.2 cm . What is the percentage error propagated in the computation of the volume?
(b) [Advanced] Suppose that we want a measurement of the volume with an error of at most 1.5%. What is the maximum percentage error that can be made measuring the diameter?
