Rutgers University
Math 151

Section 3.11: Linear Approximations - Worksheet Solutions

1. Use a well-chosen linear approximation to estimate the following quantities.
(a) $\sqrt[3]{62}$

Solution. For $f(x)=\sqrt[3]{x}$ at $x=64$, we have $f(64)=4$ and $f^{\prime}(64)=\frac{1}{3} 64^{-2 / 3}=\frac{1}{48}$, so

$$
L(x)=\frac{1}{48}(x-64)+4
$$

Therefore, $\sqrt[3]{62} \simeq L(62)=\frac{1}{48}(62-64)+4=\frac{95}{24}$.
(b) $e^{-0.8}$

Solution. For $f(x)=e^{x}$ at $x=0$, we have $f(0)=1$ and $f^{\prime}(0)=e^{0}=1$, so $L(x)=x+1$. Therefore, $e^{-0.8} \simeq L(-0.8)=-0.8+1=0.2$.
(c) $\sqrt{49.6}$

Solution. For $f(x)=\sqrt{x}$ at $x=49$, we have $f(49)=7$ and $f^{\prime}(64)=\frac{1}{2} 49^{-1 / 2}=\frac{1}{14}$, so

$$
L(x)=\frac{1}{14}(x-49)+7
$$

Therefore, $\sqrt{49.6} \simeq L(49.6)=\frac{1}{14}(49.6-49)+7=\frac{493}{70}$.
(d) $\ln (1+5 \sin (0.06))$

Solution. For $f(x)=\ln (1+5 \sin (x))$ at $x=0$, we have $f(0)=0$ and $f^{\prime}(0)=\left(\frac{5 \cos (x)}{1+5 \sin (x)}\right)_{\mid x=0}=5$, so

$$
L(x)=5 x
$$

Therefore, $\ln (1+5 \sin (0.06)) \simeq L(0.06)=5(0.06)=0.3$.
(e) $\cot \left(\frac{\pi}{6}+0.02\right)-\sqrt{3}$

Solution. For $f(x)=\cot (x)$ at $x=\frac{\pi}{6}$, we have $f\left(\frac{\pi}{6}\right)=\sqrt{3}$ and $f^{\prime}\left(\frac{\pi}{6}\right)=-\csc ^{2}\left(\frac{\pi}{6}\right)=-4$. So

$$
\cot \left(\frac{\pi}{6}+0.02\right)-\sqrt{3}=\Delta f \simeq f^{\prime}\left(\frac{\pi}{6}\right) \Delta x=-4(0.02)=-0.08
$$

(f) $\sqrt[4]{17}-\sqrt[4]{16}$

Solution. For $f(x)=\sqrt[4]{x}$ at $x=16$, we have $f(16)=2$ and $f^{\prime}(4)=\frac{1}{4} 16^{-3 / 4}=\frac{1}{32}$. So

$$
\sqrt[4]{17}-\sqrt[4]{16}=\Delta f \simeq f^{\prime}(16) \Delta x=\frac{1}{32} \cdot 1=\frac{1}{32}
$$

2. Suppose that f is a function such that $f(3)=-7$ and $f^{\prime}(3)=2$. Use a linear approximation to estimate the following quantities.
(a) $f(3.07)$

Solution. The linearization of f at $x=3$ is $L(x)=f^{\prime}(3)(x-3)+f(3)=2(x-3)-7$. So

$$
f(3.07) \simeq L(3.07)=2(3.07-3)-7=-6.86
$$

(b) [Advanced] $f\left(1+\cos (0.1)+e^{0.2}\right)$

Solution. Put $g(x)=f\left(1+\cos (x)+e^{2 x}\right)$. We have $g(0)=f\left(1+\cos (0)+e^{0}\right)=f(3)=-7$ and

$$
g^{\prime}(x)=f^{\prime}\left(1+\cos (x)+e^{2 x}\right)\left(-\sin (x)+2 e^{2 x}\right),
$$

so $g^{\prime}(0)=f^{\prime}(3)(2)=4$. Hence the linearization of g at $x=0$ is $L(x)=4 x-7$. So

$$
f\left(1+\cos (0.1)+e^{0.2}\right)=g(0.1) \simeq L(0.1)=4(0.1)-7=-6.6 .
$$

3. Find the differential $d y$ of the following functions.
(a) $y=\arcsin \left(3 x^{2}\right)$

Solution. $d y=\frac{1}{\sqrt{1-\left(3 x^{2}\right)^{2}}}(6 x) d x=\longdiv { \frac { 6 x } { \sqrt { 1 - 9 x ^ { 4 } } } d x } .$
(b) $y=4 \sqrt[3]{x}-\frac{5}{x^{2}}+e^{3}$

Solution. $d y=\left(\frac{4}{3} x^{-2 / 3}+10 x^{-3}\right) d x$.
(c) $y=\csc (5 \theta)$

Solution. $d y=-5 \csc (5 \theta) \cot (5 \theta) d \theta$.
(d) $y=5^{3-t^{2}}$

Solution. $d y=\ln (5) 5^{3-t^{2}}(-2 t) d t$.
(e) $y=x^{\cos (2 x)}$

Solution. We have $y=e^{\cos (2 x) \ln (x)}$ so

$$
d y=e^{\cos (2 x) \ln (x)}\left(-2 \sin (x) \ln (x)+\frac{\cos (2 x)}{x}\right) d x
$$

(f) $y=\sin \left(3 e^{-7 z}\right)$

Solution. $d y=-21 \cos \left(3 e^{-7 z}\right) e^{-7 z} d z$.
4. The volume of a sphere is computed by measuring its diameter.
(a) Suppose that the diameter of the sphere is measured at 5 cm with a precision of 0.2 cm . What is the percentage error propagated in the computation of the volume?

Solution. Call x the diameter of the sphere. We have $V=\frac{4}{3} \pi\left(\frac{x}{2}\right)^{3}=\frac{\pi}{6} x^{3}$. From this we deduce

$$
\begin{aligned}
& d V=\frac{\pi}{2} x^{2} d x \\
& \Rightarrow \frac{d V}{V}=\frac{\frac{\pi}{2} x^{2} d x}{\frac{\pi}{6} x^{3}}=3 \frac{d x}{x}
\end{aligned}
$$

The relative error propagated is

$$
\frac{\Delta V}{V} \simeq \frac{d V}{V}=3 \frac{d x}{x}=3 \frac{0.2}{5}=0.12
$$

which means that the pencentage error is 12%.
(b) [Advanced] Suppose that we want a measurement of the volume with an error of at most 1.5%. What is the maximum percentage error that can be made measuring the diameter?

Solution. We want to have $\frac{\Delta V}{V}=0.015$, so

$$
\frac{d x}{x} \simeq \frac{1}{3} \frac{\Delta V}{V}=0.005
$$

Therefore, the maximum percentage error that can be made measuring the diameter is 0.5%.

