Sections 3.3, 3.5: Differentiation Rules - Worksheet

1. Calculate the derivatives of the following functions.
(a) $f(x)=5 x^{4}-8 \sqrt[5]{x}-e^{4}$.
(d) $f(x)=\frac{3}{5+x^{4}}$.
(g) $f(x)=2^{x} x^{2}$.
(b) $f(x)=7 x \cos (x) e^{x}$.
(e) $f(x)=3 \sin (1) 7^{x}-x^{4 / 3}$.
(h) $f(x)=\frac{\cos (x)}{\sin (x)+1}$.
(c) $f(x)=e x^{e}+4 \frac{\sqrt{x}}{\sin (x)}$.
(f) $f(x)=\frac{x^{2}}{x e^{x}-1}$.
(i) $f(x)=\frac{x \cos (x) \sin (x)}{5^{x}}$.
2. (a) Find the points on the graph of $f(x)=2 \sec (x)+\tan (x),-\frac{\pi}{2}<x<\frac{\pi}{2}$, where the tangent line is horizontal.
(b) Find the points on the graph of $f(x)=\frac{1}{1-2 x}$ where the tangent line passes through the origin.
(c) [Advanced] Find the values of the constant a for which the tangent lines to the graph of $f(x)=$ $x^{3}+3 x^{2}+5 x$ at $x=a$ and $x=a+1$ are parallel.
3. Find the second derivative of the functions below.
(a) $f(x)=x^{3} e^{x}$.
(b) $f(x)=\frac{3 x+5}{2 x+7}$.
(c) $f(x)=\frac{7 \cos (x)}{x}$.
4. Suppose that f is a differentiable function such that $y=-2 x+1$ is tangent to the graph of f at $x=3$. Evaluate the following
(a) $f(3)$.
(b) $f^{\prime}(3)$.
(c) $\frac{d}{d x}\left(2 f(x)-x^{3}\right)_{\mid x=3}$.
(d) $\frac{d}{d x}\left(\frac{f(x)}{x}\right)_{\mid x=3}$.
(e) [Advanced] $\frac{d}{d x}\left(e^{x} f(x)^{2}\right)_{\mid x=3}$.
