## Section 3.4: Rates of Change - Worksheet Solutions

1. The position of a body moving an axis is given by $s(t)=\frac{t^{4}}{4}-2 t^{3}+8$.
(a) Find the body's displacement and average velocity on the time interval $[0,2]$.

Solution. The displacement is $\Delta s=s(2)-s(0)=-12-0=-12$. The average velocity is $\frac{\Delta s}{\Delta t}=\frac{s(2)-s(0)}{2-0}=\frac{-12}{2}=-6$.
(b) Find the velocity and acceleration of the body.

Solution. The velocity is $v(t)=\frac{d s}{d t}=t^{3}-6 t^{2}$. The acceleration is $a(t)=\frac{d v}{d t}=3 t^{2}-12 t$.
(c) When does the body change direction?

Solution. The body changes direction when the velocity changes sign. Factoring the velocity, we get $v(t)=t^{2}(t-6)$. This polynomial changes sign at $t=6$.
2. A projectile is thrown at $t=0$ straight up in the air from an altitude of 99 m at a speed of $24 \mathrm{~m} / \mathrm{sec}$. The projectile being subject to gravity only, physicists tell us that the elevation of the projectile is subject to a law of the form $h(t)=a t^{2}+b t+c$, where $a, b, c$ are unspecified constants.
(a) Find $b$ and $c$ using the information given.

Solution. We know that $h(0)=99$, so $a \cdot 0^{2}+b \cdot 0+c=99$, giving us $c=99$. Also, $v(0)=24$, which gives $(2 a t+b)_{\mid t=0}=24$, so $b=24$.
(b) Suppose that the projectile reaches its maximum elevation 4 seconds after being thrown. Find the value of the constant $a$.

Solution. We know that $v(4)=0$ since the velocity is 0 at the instant the projectile reaches its maximum elevation. Therefore, $(2 a t+24)_{\mid t=4}=0$, that is $8 a+24=0$, so $a=-3$.
(c) When will the projectile hit the ground?

Solution. The projectile hits the ground when $h(t)=0$, that is $-3 t^{2}+24 t+99=0$. This gives the solutions $t=-3,11$. Since the motion of the object is for $t \geqslant 0$, the only solution that makes sense is $t=11 \mathrm{sec}$.
3. The graph below shows the velocity $v$ of an object moving along an axis.

(a) When is the object moving forward? backward?

Solution. The object moves forward when $v(t)>0$, which happens on the interval $(6,11)$. The object moves backward when $v(t)<0$, which happens on the intervals $(0,3),(3,6),(11, \infty)$.
(b) When does the object reverse direction?

Solution. The object reverses direction when the velocity changes sign, that is at $t=6,11$.
(c) Sketch the graph of the acceleration of the object.

Solution. Recall that the value of the acceleration gives the slope of the graph of the velocity


