Rutgers University
Math 151

Section 3.6: Chain Rule - Worksheet

1. Calculate the derivatives of the following functions.
(a) $f(x)=2 \sec \left(4 x^{3}+7\right)$
(d) $f(x)=3\left(\tan \left(\frac{x}{7}\right)+1\right)^{21}$
(g) $f(x)=x 5^{3 x^{2}}$
(b) $f(x)=14 \sqrt[7]{4 x-\sin (5 x)}$
(e) $f(x)=\sqrt{25-4 x^{2}}$
(h) $f(x)=6 \cos \left(x^{3} \sin (1-2 x)\right)$
(c) $f(x)=\cos \left(x^{2}\right)-\cos (x)^{2}$
(f) $f(x)=e^{5 \cos (3 x)}$
(i) $f(x)=\frac{2 x}{\sqrt{\cos (3 x)}}$
2. Find the x-values of the points on the graph of $f(x)=(2 x+1) e^{-x^{2}}$ where the tangent line is horizontal.
3. [Advanced] Suppose that f is a differentiable function such that

$$
\begin{aligned}
& f(0)=-1, \quad f(1)=3, \quad f(2)=-5, \quad f(4)=7 \\
& f^{\prime}(0)=-2, \quad f^{\prime}(1)=4, \quad f(2)=3, \quad f^{\prime}(4)=-1
\end{aligned}
$$

Find an equation of the tangent lines to each of the following functions at the given point.
(a) $g(x)=f(-2 x)$ at $x=-1$.
(b) $g(x)=f\left(x^{2}\right)$ at $x=2$.
(c) $g(x)=\sec \left(\frac{\pi f(x)}{12}\right)$ at $x=1$.
(d) $g(x)=f(4 x) e^{3 x}$ at $x=0$.

