Rutgers University
Math 151

Section 3.6: Chain Rule - Worksheet Solutions

1. Calculate the derivatives of the following functions.
(a) $f(x)=2 \sec \left(4 x^{3}+7\right)$

Solution.

$$
f^{\prime}(x)=2 \sec \left(4 x^{3}+7\right) \tan \left(4 x^{3}+7\right)\left(12 x^{2}\right)=24 x^{2} \sec \left(4 x^{3}+7\right) \tan \left(4 x^{3}+7\right)\left(12 x^{2}\right)
$$

(b) $f(x)=14 \sqrt[7]{4 x-\sin (5 x)}$

Solution.

$$
f^{\prime}(x)=14 \frac{1}{7}(4 x-\sin (5 x))^{1 / 7-1}(4-5 \cos (5 x))=\frac{2(4-5 \cos (5 x))}{(4 x-\sin (5 x))^{6 / 7}}
$$

(c) $f(x)=\cos \left(x^{2}\right)-\cos (x)^{2}$

Solution.

$$
f^{\prime}(x)=-\sin \left(x^{2}\right)(2 x)-2 \cos (x)(-\sin (x))=-2 x \sin \left(x^{2}\right)+2 \cos (x) \sin (x)
$$

(d) $f(x)=3\left(\tan \left(\frac{x}{7}\right)+1\right)^{21}$

Solution.

$$
f^{\prime}(x)=3 \cdot 21\left(\tan \left(\frac{x}{7}\right)+1\right)^{20} \sec \left(\frac{x}{7}\right)^{2} \frac{1}{7}=9\left(\tan \left(\frac{x}{7}\right)+1\right)^{20} \sec \left(\frac{x}{7}\right)^{2}
$$

(e) $f(x)=\sqrt{25-4 x^{2}}$

Solution.

$$
f^{\prime}(x)=\frac{1}{2}\left(25-4 x^{2}\right)^{1 / 2-1}(-8 x)=-\frac{4 x}{\sqrt{25-4 x^{2}}}
$$

(f) $f(x)=e^{5 \cos (3 x)}$

Solution.

$$
f^{\prime}(x)=e^{5 \cos (3 x)} 5(-3 \sin (3 x))=-15 e^{5 \cos (3 x)} \sin (3 x)
$$

(g) $f(x)=x 5^{3 x^{2}}$

Solution.

$$
f^{\prime}(x)=1 \cdot 5^{3 x^{2}}+x \cdot \ln (5) 5^{3 x^{2}}(6 x)=5^{3 x^{2}}\left(1+6 \ln (5) x^{2}\right)
$$

(h) $f(x)=6 \cos \left(x^{3} \sin (1-2 x)\right)$

Solution.

$$
\begin{aligned}
f^{\prime}(x) & =-6 \sin \left(x^{3} \sin (1-2 x)\right)\left(3 x^{2} \sin (1-2 x)+x^{3} \cos (1-2 x)(-2)\right) \\
& =-6 \sin \left(x^{3} \sin (1-2 x)\right)\left(3 x^{2} \sin (1-2 x)-2 x^{3} \cos (1-2 x)\right)
\end{aligned}
$$

(i) $f(x)=\frac{2 x}{\sqrt{\cos (3 x)}}$

Solution.

$$
f^{\prime}(x)=\frac{2 \sqrt{\cos (3 x)}-2 x \frac{1}{2}(\cos (3 x))^{-1 / 2}(-3 \sin (3 x))}{(\sqrt{\cos (3 x)})^{2}}=\frac{2 \cos (3 x)+3 x \sin (3 x)}{\cos (3 x)^{3 / 2}}
$$

2. Find the x-values of the points on the graph of $f(x)=(2 x+1) e^{-x^{2}}$ where the tangent line is horizontal.

Solution. We have

$$
f^{\prime}(x)=2 e^{-x^{2}}+(2 x+1) e^{-x^{2}}(-2 x)=2 e^{-x^{2}}(1+(2 x+1)(-x))=2 e^{-x^{2}}\left(1-x-2 x^{2}\right)
$$

The tangent line to the graph of f is horizontal when $f^{\prime}(x)=0$. The equation $2 e^{-x^{2}}\left(1-x-2 x^{2}\right)=0$ gives $1-x-2 x^{2}=0$ since $2 e^{-x^{2}}$ is never zero. The solutions of this quadratic equation are

$$
x=\frac{-1 \pm \sqrt{1+4 \cdot 2}}{4}=\frac{-1 \pm 3}{4}=-1, \frac{1}{2}
$$

3. [Advanced] Suppose that f is a differentiable function such that

$$
\begin{aligned}
& f(0)=-1, \quad f(1)=3, \quad f(2)=-5, \quad f(4)=7 \\
& f^{\prime}(0)=-2, \quad f^{\prime}(1)=4, \quad f(2)=3, \quad f^{\prime}(4)=-1
\end{aligned}
$$

Find an equation of the tangent lines to each of the following functions at the given point.
(a) $g(x)=f(-2 x)$ at $x=-1$.

Solution. We have $g(-1)=f(2)=-5$ and

$$
g^{\prime}(-1)=\frac{d}{d x}(f(-2 x))_{\mid x=-1}=-2 f^{\prime}(-2 x)_{\mid x=-1}=-2 f^{\prime}(2)=-6
$$

So the tangent line has equation $y=-6(x+1)-5$.
(b) $g(x)=f\left(x^{2}\right)$ at $x=2$.

Solution. We have $g(2)=f\left(2^{2}\right)=f(4)=7$ and

$$
g^{\prime}(2)=-\frac{d}{d x}\left(f\left(x^{2}\right)\right)_{\mid x=2}=2 x f^{\prime}\left(x^{2}\right)_{\mid x=2}=4 f^{\prime}(4)=-4 .
$$

So the tangent line has equation $y=-4(x-2)-7$.
(c) $g(x)=\sec \left(\frac{\pi f(x)}{12}\right)$ at $x=1$.

Solution. We have $g(1)=\sec \left(\frac{\pi f(1)}{12}\right)=\sec \left(\frac{3 \pi}{12}\right)=\sec \left(\frac{\pi}{4}\right)=\sqrt{2}$ and
$g^{\prime}(1)=-\frac{d}{d x}\left(\sec \left(\frac{\pi f(x)}{12}\right)\right)_{\mid x=1}=\frac{\pi f^{\prime}(x)}{12} \sec \left(\frac{\pi f(x)}{12}\right) \tan \left(\frac{\pi f(x)}{12}\right)_{\mid x=1}=\frac{4 \pi}{12} \sec \left(\frac{\pi}{4}\right) \tan \left(\frac{\pi}{4}\right)=\frac{\pi \sqrt{2}}{3}$.
So the tangent line has equation $y=\frac{\pi \sqrt{2}}{3}(x-1)-\sqrt{2}$.
(d) $g(x)=f(4 x) e^{3 x}$ at $x=0$.

Solution. We have $g(0)=f(4 \cdot 0) e^{3 \cdot 0}=-1$ and

$$
g^{\prime}(0)=-\frac{d}{d x}\left(f(4 x) e^{3 x}\right)_{\mid x=0}=\left(4 f^{\prime}(4 x) e^{3 x}+3 f(4 x) e^{3 x}\right)_{\mid x=0}=4 f^{\prime}(0)+3 f(0)=-11
$$

So the tangent line has equation $y=-11 x-1$.

