Rutgers University
Math 151

Section 3.7: Implicit Differentiation - Worksheet Solutions

1. Calculate $\frac{d y}{d x}$ for the following curves.
(a) $e^{5 x y}+11 \tan (x)=y^{2}$

Solution. Differentiating both sides with respect to x gives

$$
\begin{aligned}
& 5 e^{5 x y}\left(y+x y^{\prime}\right)+11 \sec (x)^{2}=2 y y^{\prime} \\
& 5 e^{5 x y} x y^{\prime}-2 y y^{\prime}=-11 \sec (x)^{2}-5 e^{5 x y} y \\
& \left(5 e^{5 x y} x-2 y\right) y^{\prime}=-11 \sec (x)^{2}-5 e^{5 x y} y \\
& y^{\prime}=\frac{-11 \sec (x)^{2}-5 e^{5 x y} y}{5 e^{5 x y} x-2 y}
\end{aligned}
$$

(b) $x^{3}-x \sin (y)=3 x y$

Solution. Differentiating both sides with respect to x gives

$$
\begin{aligned}
& 3 x^{2}-\sin (y)-x \cos (y) y^{\prime}=3 y+3 x y^{\prime} \\
& 3 x y^{\prime}+x \cos (y) y^{\prime}=3 x^{2}-\sin (y)-3 y \\
& (3 x+x \cos (y)) y^{\prime}=3 x^{2}-\sin (y)-3 y \\
& y^{\prime}=\frac{3 x^{2}-\sin (y)-3 y}{3 x+x \cos (y)}
\end{aligned}
$$

(c) $\sqrt{x^{2}+y^{2}}=3^{y}$

Solution. Differentiating both sides with respect to x gives

$$
\begin{aligned}
& \frac{2 x+2 y y^{\prime}}{2 \sqrt{x^{2}+y^{2}}}=\ln (3) 3^{y} y^{\prime} \\
& x+y y^{\prime}=\ln (3) 3^{y} \sqrt{x^{2}+y^{2}} y^{\prime} \\
& \ln (3) 3^{y} \sqrt{x^{2}+y^{2}} y^{\prime}-y y^{\prime}=x \\
& \left(\ln (3) 3^{y} \sqrt{x^{2}+y^{2}}-y\right) y^{\prime}=x \\
& y^{\prime}=\frac{x}{\ln (3) 3^{y} \sqrt{x^{2}+y^{2}}-y}
\end{aligned}
$$

(d) $x^{4}+6 x y^{2}+5 y^{3}=0$

Solution. Differentiating both sides with respect to x gives

$$
\begin{aligned}
& 4 x^{3}+6 y^{2}+12 x y y^{\prime}+15 y^{2} y^{\prime}=0 \\
& \left(12 x y+15 y^{2}\right) y^{\prime}=-4 x^{3}-6 y^{2} \\
& y^{\prime}=\frac{-4 x^{3}-6 y^{2}}{12 x y+15 y^{2}}
\end{aligned}
$$

2. Consider the curve of equation $x^{2}+6 x y-y^{2}=40$. Find the points on the curve, if any, where the tangent line is (a) horizontal, (b) vertical, (c) [Advanced] perpendicular to $y=2 x+9$.

Solution. First, let us differentiate the relation with respect to x :

$$
\begin{aligned}
& 2 x+6 y+6 x y^{\prime}-2 y y^{\prime}=0 \\
& x+3 y+3 x y^{\prime}-y y^{\prime}=0
\end{aligned}
$$

(a) The tangent line is horizontal when $y^{\prime}=0$. Using this in the previous equation, we get $x+3 y=0$, or $x=-3 y$. Plugging this in the equation of the curve gives $(-3 y)^{2}+6(-3 y) y-y^{2}=40$, or $-10 y^{2}=40$. This equation has no solution, so there are no points on the curve where the tangent line is horizontal.
(b) Solving for y^{\prime} in the previous equation gives $y^{\prime}=-\frac{x+3 y}{3 x-y}$, so the tangent line is vertical when $y=3 x$. Plugging this in the equation of the curve gives $x^{2}+6 x(3 x)-(3 x)^{2}=40$, or $10 x^{2}=40$. We get $x^{2}=4$, that is $x=2$ (which gives $y=6$) and $x=-2$ (which gives $y=-6$). So the points where the tangent line is vertical are $(2,6),(-2,-6)$.
(c) The tangent line is perpendicular to $y=2 x+9$ when $y^{\prime}=-\frac{1}{2}$. Plugging this in $2 x+6 y+6 x y^{\prime}-2 y y^{\prime}=0$ gives $2 x+6 y-3 x+y=0$, or $x=7 y$. Substituting $x=7 y$ in the equation of the curve gives

$$
\begin{aligned}
& (7 y)^{2}+6(7 y) y-y^{2}=40 \\
& 90 y^{2}=40 \\
& y^{2}=\frac{4}{9} \\
& y= \pm \frac{2}{3}
\end{aligned}
$$

For $y=\frac{2}{3}$, we get $x=\frac{14}{3}$ and for $y=-\frac{2}{3}$, we get $x=-\frac{14}{3}$. Therefore, the points on the curve where the tangent line is perpendicular to $y=2 x+9$ are $\left(\frac{14}{3}, \frac{2}{3}\right),\left(-\frac{14}{3},-\frac{2}{3}\right)$.

