Sections $3.8,3.9$

Derivatives of
Inverse Functions

Learning Goals

Learning Goal	Homework Problems
3.8.1 Understand how the derivatives of a function and its inverse behave graphically. Use Theorem 3 to compute the derivative of an inverse function, or to compute the derivative of the inverse function at a given point $x=f(a)$.	$1-10,101,105-114$.
3.8.2 Know the formulas for the derivatives of logarithmic and exponential functions of any base. Use these formulas to compute derivatives of related functions.	$11-40,55-88,95,96$, $98,100$.
3.8.3 Use logarithmic differentiation to compute derivatives. Recognize when this technique is helpful, and when it is necessary.	$41-54,89-100$.
3.8.4 Answer conceptual questions involving inverse functions and logarithms. Learning Goal	$9,10,104$.
3.9.1 Compute angles in a right triangle using inverse trigonometric functions.	Homework Problems
3.9.2 Use special values or information about the graphs of the six basic trigonometric functions to compute special values or limits of their inverses.	$1-20,51-54$.
3.9.3 Use trigonometric identities and the methods of §3.8 to find formulas for the derivatives of the six basic trigonometric functions.	$55-58$.
3.9.4 Know the derivatives of the six basic trigonometric functions and use them to compute related derivatives.	$21-46$.
3.9.5 Answer conceptual questions involving the inverse trigonometric functions and their derivatives.	$49-54,59,60,63-70$.

Conceptual introduction: suppose that f is a one-to-one differentiable function. How can we find the derivative of the inverse function f^{-1} ?
$\triangle f^{-1}(x) \neq \frac{1}{f(x)}$
The inverse function f^{-1} is the "reverse assignment" of f, ie: $\quad f(a)=b \quad \Leftrightarrow \quad f^{-1}(b)=a$.

Reminder: the graph of f^{-1} is the symmetric of the graph of f about the line $y=x$.

The tangent line to f^{-1} at (b, a) is the symmetric to the tangent line to f at (a, b) about $y=x$.
\Rightarrow The slopes are reciprocal (x / y switched).

So for any point $(b, a)=\left(x, f^{-1}(x)\right)$ on the graph of f^{-1} :

$$
\begin{aligned}
& \left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}(a)} \\
& \text { or }\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
\end{aligned}
$$

Proof of formula with implicit differentiation:
$y=f^{-1}(x)$, want to find $\frac{d y}{d x}=y^{\prime}$.

$$
\begin{aligned}
& \frac{d}{d x} f(y)=x \\
& f^{\prime}(y) y^{\prime}=1 \\
& y^{\prime}=\frac{1}{f^{\prime}(y)} \\
& \frac{d y}{d x}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)} .
\end{aligned}
$$

Derivatives of common inverse functions to know: (see below for full derivation)

- Logarithmic Functions:

$$
\frac{d}{d x}(\ln (x))=\frac{1}{x} \quad \frac{d}{d x}\left(\log _{a}(x)\right)=\frac{1}{\ln (a) x}
$$

- Inverse Trigonometric Functions:

$$
\begin{array}{|l|}
\hline \frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}
\end{array} \begin{array}{|c|}
\frac{d}{d x}\left(\cos ^{-1}(x)\right)=-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}} \\
\frac{d}{d x}\left(\sec ^{-1}(x)\right)=\frac{1}{|x| \sqrt{x^{2}-1}} \\
\frac{d}{d x}\left(\cot ^{-1}(x)\right)=-\frac{1}{1+x^{2}} \\
\frac{d}{d x}\left(\csc ^{-1}(x)\right)=-\frac{1}{|x| \sqrt{x^{2}-1}} \\
\hline
\end{array}
$$

Examples: 1) Find the derivatives of $\ln (x)$ and $\log _{a}(x)$ for $a>0$.

If $f(x)=e^{x}, f^{-1}(x)=\ln (x)$ and $f^{\prime}(x)=e^{x}$

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}=\frac{1}{e^{\ln (x)}}=\frac{1}{x}
$$

So $\frac{d}{d x}(\ln (x))=\frac{1}{x}$

* memorize

If $f(x)=a^{x}, f^{-1}(x)=\log _{a}(x)$ and $f^{\prime}(x)=\ln (a) a^{x}$.

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}=\frac{1}{\ln (a) a^{\log _{a}(x)}}=\frac{1}{\ln (a) x}
$$

So $\frac{d}{d x}\left(\log _{a}(x)\right)=\frac{1}{\ln (a) x}$

* memorize

Remarks: * the second formula also follows from $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$

$$
\frac{d}{d x}\left(\log _{a}(x)\right)=\frac{d}{d x}\left(\frac{\ln (x)}{\ln (a)}\right)=\frac{1}{\ln (a)} \frac{d}{d x}(\ln (x))=\frac{1}{\ln (a)} \cdot \frac{1}{x}=\frac{1}{\ln (a) x} .
$$

- We can also use implicit differentiation to find there derivatives.
If $y=\ln (x)$, then $e^{y}=x$ and we want to find $\frac{d y}{d x}$.

$$
\begin{aligned}
\frac{d}{d x}\left\{\begin{array}{l}
e^{y}=x \\
e^{y} \frac{d y}{d x}=1 \Rightarrow \\
\frac{d y}{d x}=\frac{1}{e^{y}} \text { and } e^{y}=x \\
\frac{d}{d x}(\ln (x))=\frac{1}{x}
\end{array}\right.
\end{aligned}
$$

2) Find the derivatives of $\sin ^{-1}, \cos ^{-1}, \tan ^{-1}, \sec ^{-1}, \cot ^{-1}$ and csc $^{-1}$.

- $\theta=\sin ^{-1}(x)=\arcsin (x)$ is the angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ such that $\sin (\theta)=x$. We want to find $\frac{d \theta}{d x}$.

$$
\frac{d}{d x} \int \begin{aligned}
& \sin (\theta)=x \\
& \cos (\theta) \frac{d \theta}{d x}=1 \Rightarrow \frac{d \theta}{d x}=\frac{1}{\cos (\theta)}
\end{aligned}
$$

To express $\cos (\theta)$ in terms of x, use Pythagorean identity $\cos (\theta)^{2}=1-\sin (\theta)^{2}=1-x^{2}$ since $\sin (\theta)=x$.

$$
\Rightarrow \quad \cos (\theta)=\begin{gathered}
\pm \sqrt{1-x^{2}}=\sqrt{1-x^{2}} \\
\\
\theta \text { in }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \text { so } \cos (\theta) \geqslant 0 .
\end{gathered}
$$

So $\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$.

* memorize
- $\theta=\cos ^{-1}(x)=\arccos (x)$ is the angle in $[0, \pi]$ such that $\cos (\theta)=x$. We want to find $\frac{d \theta}{d x}$.

$$
\begin{aligned}
& \frac{d}{d x}\left(\begin{array}{l}
\cos (\theta)=x \\
-\sin (\theta) \frac{d \theta}{d x}=1 \Rightarrow \frac{d \theta}{d x}=-\frac{1}{\sin (\theta)}
\end{array}=1 .\right.
\end{aligned}
$$

To express $\sin (\theta)$ in terms of x, we use the Pythagorean identity $\sin (\theta)^{2}=1-\cos (\theta)^{2}=1-x^{2}$ since $\cos (\theta)=x$.

$$
\begin{array}{r}
\Rightarrow \quad \sin (\theta)= \pm \sqrt{1-x^{2}}=\sqrt{1-x^{2}} . \\
\theta \text { in }[0, \pi] \text { so } \cos (\theta) \geqslant 0
\end{array}
$$

So $\frac{d}{d x}\left(\cos ^{-1}(x)\right)=-\frac{1}{\sqrt{1-x^{2}}}$

- $\theta=\tan ^{-1}(x)=\arctan (x)$ is the angle in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such
that $\tan (\theta)=x$. We want to find $\frac{d \theta}{d x}$.

$$
\frac{d}{d x} \int \tan (\theta)=x \quad \sec (\theta)^{2} \frac{d \theta}{d x}=1 \Rightarrow \frac{d \theta}{d x}=\frac{1}{\sec (\theta)^{2}}
$$

To express $\sec (\theta)^{2}$ in terms of x, use Pythagorean identity $\sec (\theta)^{2}=1+\tan (\theta)^{2}=1+x^{2}$ since $\tan (\theta)=x$.

So $\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$.

* memorize
- $\theta=\sec ^{-1}(x)=\operatorname{arcsec}(x)$ is the angle in $\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$ such that $\sec (\theta)=x$. We want to find $\frac{d \theta}{d x}$.

$$
\begin{aligned}
& \frac{d}{d x} \int \sec (\theta)=x \\
& \sec (\theta) \tan (\theta) \frac{d \theta}{d x}=1 \Rightarrow \frac{d \theta}{d x}=\frac{1}{\sec (\theta) \tan (\theta)}
\end{aligned}
$$

We know $\sec (\theta)=x$. To express $\tan (\theta)$ in terms of x, we use the Pythagorean identity $\tan (\theta)^{2}=\sec (\theta)^{2}-1=x^{2}-1$
So $\tan (\theta)= \pm \sqrt{x^{2}-1}$
when θ in $\left[0, \frac{\pi}{2}\right), \tan (\theta) \geqslant 0$ so + when θ in $\left(\frac{\pi}{2}, \pi\right], \tan (\theta) \leqslant 0$ so -
So $\frac{d \theta}{d x}= \begin{cases}\frac{1}{x \sqrt{x^{2}-1}} & \text { if } \theta \text { in }\left[0, \frac{\pi}{2}\right), \text { i.e. } \sec (\theta)=x>0 . \\ -\frac{1}{x \sqrt{x^{2}-1}} & \text { if } \theta \text { in }\left(\frac{\pi}{2}, \pi\right], \text { i.e. } \sec (\theta)=x<0 .\end{cases}$

So $\quad \frac{d}{d x}\left(\sec ^{-1}(x)\right)=\frac{1}{|x| \sqrt{x^{2}-1}}$.

* memorize
- $\theta=\cot ^{-1}(x)=\operatorname{arccot}(x)$ is the angle in $(0, \pi)$ such
that $\cot (\theta)=x$. We want to find $\frac{d \theta}{d x}$.

$$
\frac{d}{d x} \int-\csc (\theta)^{2} \frac{d \theta}{d x}=1 \Rightarrow \frac{d \theta}{d x}=-\frac{1}{\csc (\theta)^{2}}
$$

To express $\csc (\theta)^{2}$ in terms of x, use Pythagorean identity $\csc (\theta)^{2}=1+\cot (\theta)^{2}=1+x^{2}$ since $\cot (\theta)=x$.

So $\frac{d}{d x}\left(\cot ^{-1}(x)\right)=-\frac{1}{1+x^{2}}$.

* memorize
- $\theta=\csc ^{-1}(x)=\operatorname{arccsc}(x)$ is the angle in $\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]$ such that $\csc (\theta)=x$. We want to find $\frac{d \theta}{d x}$.

$$
\begin{aligned}
& \frac{d}{d x} \int \csc (\theta)=x \\
& \quad-\csc (\theta) \cot (\theta) \frac{d \theta}{d x}=1 \Rightarrow \frac{d \theta}{d x}=-\frac{1}{\csc (\theta) \cot (\theta)}
\end{aligned}
$$

We know $\csc (\theta)=x$. To express $\cot (\theta)$ in terms of x, we use the Pythagorean identity $\cot (\theta)^{2}=\csc (\theta)^{2}-1=x^{2}-1$
So $\cot (\theta)= \pm \sqrt{x^{2}-1}$
when θ in $\left(0, \frac{\pi}{2}\right], \cot (\theta) \geqslant 0$ so + when θ in $\left[-\frac{\pi}{2}, 0\right), \cot (\theta) \leqslant 0$ so -
So $\frac{d \theta}{d x}=\left\{\begin{array}{cl}\frac{1}{x \sqrt{x^{2}-1}} & \text { if } \theta \text { in }\left[-\frac{\pi}{2}, 0\right), \text { i.e } \csc (\theta)=x<0 \\ -\frac{1}{x \sqrt{x^{2}-1}} & \text { if } \theta \text { in }\left(0, \frac{\pi}{2}\right], \text { i.e. } \csc (\theta)=x>0\end{array}\right.$

So $\quad \frac{d}{d x}\left(\csc ^{-1}(x)\right)=-\frac{1}{|x| \sqrt{x^{2}-1}}$. * memorize
3) Let $f(x)=x^{3}+2 x+7$. Find an equation of the tangent line to $y=f^{-1}(x)$ at $x=7$.

First, find $f^{-1}(7)$. For this we need to solve $f(x)=7$

$$
\begin{aligned}
& x^{3}+2 x+7=7 \\
& x^{3}+2 x=0 \\
& x\left(x^{2}+2\right)=0 \\
& x=0 \quad \text { or } \quad x^{2}+2=0 \\
& \Rightarrow f^{-1}(7)=0 \quad \text { no solution }
\end{aligned}
$$

Next, find $\left(f^{-1}\right)^{\prime}(7)$. We know that:

$$
\begin{array}{rlrl}
\left(f^{-1}\right)^{\prime}(7) & =\frac{1}{f^{\prime}\left(f^{-1}(7)\right)} & & f^{\prime}(x)=3 x^{2}+2 \\
& & f^{-1}(7)=0 \\
& =\frac{1}{f^{\prime}(0)}=\frac{1}{2} . &
\end{array}
$$

So the tangent line to $y=f^{-1}(x)$ at $x=7$:

$$
\left\{\begin{array}{l}
\text { passes through }(7,0) \Rightarrow \text { equation } y=\frac{1}{2}(x-7) \\
\text { has slope } \frac{1}{2}
\end{array}\right.
$$

4) Suppose that the tangent line to $y=f(x)$ at $x=2$ has equation $y=-3 x+7$. Find an equation of the tangent line to $y=f^{-1}(x)$ at $x=f(2)$.

First find the point $\left(f(2), f^{-1}(f(2))\right)=(f(2), 2)$

$$
f(2)=-3(2)+7=-6+7=1 .
$$

So the tangent line passes through $(1,2)$.

Slope: $\quad\left(f^{-1}\right)^{\prime}(f(2))=\frac{1}{f^{\prime}(2)}=-\frac{1}{3}$.
So the equation is $y=-\frac{1}{3}(x-1)+2$
5) Calculate the derivatives of the following functions.
a) $f(x)=\ln \left(\tan ^{-1}(5 x)\right)$
b) $g(x)=\sec ^{-1}\left(\frac{2}{x}\right)$
c) $h(x)=\sin ^{-1}(7-x)^{2}+5 \sqrt{\ln (x)}$
d) $k(x)=\frac{1}{x \ln (x)}+\ln (11)$.
a)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\ln \left(\tan ^{-1}(5 x)\right)\right) \\
& =\frac{1}{\tan ^{-1}(6 x)} \cdot \frac{1}{1+(5 x)^{2}} \cdot 5=\frac{5}{\tan ^{-1}(5 x)\left(1+25 x^{2}\right)}
\end{aligned}
$$

b)

$$
\begin{aligned}
& g^{\prime}(x)=\frac{d}{d x}\left(\sec ^{-1}\left(\frac{2}{x}\right)\right)=\frac{1}{\left|\frac{2}{x}\right| \sqrt{\left(\frac{2}{x}\right)^{2}-1}} \cdot\left(-\frac{2}{x^{2}}\right)=-\frac{1}{|x| \sqrt{\frac{4}{x^{2}}-1}} \\
& =-\frac{1}{\sqrt{4-x^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } h^{\prime}(x)=\frac{d}{d x}\left(\sin ^{-1}(7-x)^{2}+5 \sqrt{\ln (x)}\right) \\
& =2 \sin ^{-1}(7-x) \frac{1}{\sqrt{1-(7-x)^{2}}}(-1)+\frac{5}{2 \sqrt{\ln (x)} x}
\end{aligned}
$$

d) $k^{\prime}(x)=\frac{d}{d x}\left(\frac{1}{x \ln (x)}+\frac{\text { constant }}{\ln (11))}=-\frac{\frac{d}{d x}(x \ln (x))}{(x \ln (x))^{2}}\right.$

$$
=-\frac{\ln (x)+x \frac{1}{x}}{(x \ln (x))^{2}}=-\frac{\ln (x)+1}{(x \ln (x))^{2}} \text {. }
$$

Logarithmic Differentiation: method to compute derivatives for functions involving many factors or exponents, or with base and exponents both depending on x.

Basic example: $y=x^{x}$, calculate $\frac{d y}{d x}$.
1 This is neither an exponential (base depends on x) nor a power (exponent depends on x). So we cannot use any of the basic rules.
With logarithmic differentiation:

$$
\begin{aligned}
& y=x^{x} \\
& \ln (y)=\ln \left(x^{x}\right) \text { Step 1: take } \ln \\
& \ln (y)=x \ln (x) \text { Step 2: simplify } \\
& \frac{1}{y} y^{\prime}=\ln (x)+x \frac{1}{x}=\ln (x)+1 \text {. Step 3: solve for } y^{\prime} \\
& y^{\prime}=y(\ln (x)+1), \text { Step 4: replace } y \\
& y^{\prime}=x^{x}(\ln (x)+1)
\end{aligned}
$$

Remark: we could also use properties of logs to write $y=e^{x \ln (x)}$ and we the chain rule.

Examples: compute the derivatives of the following functions using logarithmic differentiation.

1) $y=(3 x-1)^{\sqrt{x}}$
2) $y=\frac{\left(x^{2}-1\right)^{17} \sqrt{x-3}}{(x+1)^{44}}$
3) $y=(1-5 x)^{\sin ^{-1}(3 x)}$
4) $y=\frac{x \csc ^{-1}(x)}{\cot (7 x)^{2}}$.

$$
\begin{aligned}
& \text { 1) } \begin{array}{l}
y=(3 x-1)^{\sqrt{x}} \\
\frac{d}{d x} \int^{\ln (y)}=\begin{array}{l}
\ln ((3 x-1) \sqrt{x})=\sqrt{x} \ln (3 x-1) \\
\frac{1}{y} y^{\prime}=\frac{1}{2 \sqrt{x}} \ln (3 x-1)+\sqrt{x} \cdot \frac{3}{3 x-1}=\frac{\ln (3 x-1)}{2 \sqrt{x}}+\frac{3 \sqrt{x}}{3 x-1} \\
y^{\prime}=y\left(\frac{\ln (3 x-1)}{2 \sqrt{x}}+\frac{3 \sqrt{x}}{3 x-1}\right)=(3 x-1)^{\sqrt{x}}\left(\frac{\ln (3 x-1)}{2 \sqrt{x}}+\frac{3 \sqrt{x}}{3 x-1}\right) .
\end{array} .
\end{array} . . \begin{array}{l}
\end{array} .
\end{aligned}
$$

$$
\text { 2) } \begin{aligned}
& y=\frac{\left(x^{2}-1\right)^{17} \sqrt{x-3}}{(x+1)^{44}} \\
& \frac{d}{d x}\left(\begin{array}{rl}
\ln (y) & =\ln \left(\frac{\left(x^{2}-1\right)^{17} \sqrt{x-3}}{(x+1)^{44}}\right)=17 \ln \left(x^{2}-1\right)+\frac{1}{2} \ln (x-3)-44 \ln (x+1) \\
\frac{1}{y} y^{\prime} & =\frac{34 x}{x^{2}-1}+\frac{1}{2(x-3)}-\frac{44}{x+1} \\
y^{\prime} & =y\left(\frac{34 x}{x^{2}-1}+\frac{1}{2(x-3)}-\frac{44}{x+1}\right) \\
& =\frac{\left(x^{2}-1\right)^{17} \sqrt{x-3}}{(x+1)^{44}}\left(\frac{34 x}{x^{2}-1}+\frac{1}{2(x-3)}-\frac{44}{x+1}\right)
\end{array}\right.
\end{aligned}
$$

$$
\text { 3) } \begin{aligned}
y=(1-5 x)^{\sin ^{-1}(3 x)} \\
\frac{d}{d x}\left(\begin{array}{rl}
\ln (y) & =\ln \left((1-5 x)^{\sin ^{-1}(3 x)}\right)=\sin ^{-1}(3 x) \ln (1-5 x) \\
\frac{1}{y} y^{\prime} & =\frac{3}{\sqrt{1-9 x^{2}}} \ln (1-5 x)+\sin ^{-1}(3 x) \frac{-5}{1-5 x}=\frac{3 \ln (1-5 x)}{\sqrt{1-9 x^{2}}}-\frac{5 \sin ^{-1}(3 x)}{1-5 x} \\
y^{\prime} & =y\left(\frac{3 \ln (1-5 x)}{\sqrt{1-9 x^{2}}}-\frac{5 \sin ^{-1}(3 x)}{1-5 x}\right) \\
& =(1-5 x)^{\sin ^{-1}(3 x)}\left(\frac{3 \ln (1-5 x)}{\sqrt{1-9 x^{2}}}-\frac{5 \sin ^{-1}(3 x)}{1-5 x}\right)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4) } \begin{aligned}
y & =\frac{x \csc ^{-1}(x)}{\cot (7 x)^{2}} . \\
\ln (y) & =\ln \left(\frac{x \csc ^{-1}(x)}{\cot (7 x)^{2}}\right)=\ln (x)+\ln \left(\csc ^{-1}(x)\right)-2 \ln (\cot (7 x)) \\
\frac{1}{y} y^{\prime} & =\frac{1}{x}-\frac{1}{|x| \sqrt{x^{2}-1} \csc ^{-1}(x)}+\frac{14 \csc (7 x)^{2}}{\cot (7 x)} \\
y^{\prime} & =y\left(\frac{1}{x}-\frac{1}{|x| \sqrt{x^{2}-1} \csc ^{-1}(x)}+\frac{14 \csc (7 x)^{2}}{\cot (7 x)}\right) \\
& =\frac{x \csc ^{-1}(x)}{\cot (7 x)^{2}}\left(\frac{1}{x}-\frac{1}{|x| \sqrt{x^{2}-1} \csc ^{-1}(x)}+\frac{14 \csc (7 x)^{2}}{\cot (7 x)}\right) .
\end{aligned}
\end{aligned}
$$

