Sec	tions	3.	8.3	.9

Inverse Functions

Learning Goals

	V																		
Learning Goal Homework Pro										k Prob	olems								
 3.8.1 Understand how the derivatives of a function and its inverse behave graphically. Use Theorem 3 to compute the derivative of an inverse function, or to compute the derivative of the inverse function at a given point $x = f(a)$.										1-10, 101, 105-114.									
					the de	rivativ	ves of	logarit	hmic	and		11-4	11-40, 55-88, 95, 96,						
3.8.2 Know the formulas for the derivatives of logarithmic and exponential functions of any base. Use these formulas to compute derivatives of related functions.									98, 1	98, 100.									
 3.8.3 Use logarithmic differentiation to compute derivatives. Recognize when this technique is helpful, and when it is necessary.										41-54, 89-100.									
			nceptu	al que	stions	invol	ving ir	nverse	functi	ons ar	nd	9, 10, 104.							
 logarithms. Learning Goal									Homework Problems										
 3.9.1 Compute angles in a right triangle using inverse trigonometric functions.									47-4	.9.									
3.9.2	Use s		l value									1-20	, 51-5	54.					
 basic trigonometric functions to compute special values or limits of their inverses.																			
3.9.3 Use trigonometric identities and the methods of §3.8 to find formulas for the derivatives of the six basic trigonometric functions.										55-5	55-58.								
 3.9.4 Know the derivatives of the six basic trigonometric functions and use them to compute related derivatives.									21-4	21-46.									
3.9.5 Answer conceptual questions involving the inverse									49-5	49-54, 59, 60, 63-70.									
trigonometric functions and their derivatives.																			

 $\int_{a}^{-1} f(x) \neq \frac{1}{f(x)}$ The inverse function f^{-1} is the "reverse assignment"
of f, i.e. $f(a) = 6 \Leftrightarrow f^{-1}(b) = a$.

Reminder: the graph of f^{-1} is the symmetric of the graph of f about the line y = x.

So for any point (b,a) = (x, f''(x)) on the graph of f'': $(f')'(b) = \frac{1}{f'(a)}$

or
$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Proof of formula with implicit differentiation:

$$g = f^{-1}(x), \quad \text{want} \quad \text{to} \quad find \quad \frac{dy}{dx} = g^{-1}.$$

$$\frac{d}{dx} \left(\frac{f(y)}{f(y)} = x \\ \frac{d}{dx} \left(\frac{f(y)}{f(y)} = 1 \\ y^{-1} = \frac{1}{f^{-1}(y)} \right).$$
Derivatives of common inverse functions to know:
(see below for full derivation)
$$\frac{d}{dx} \left(\ln(x) \right) = \frac{1}{x} \qquad \frac{d}{dx} \left(\log_{h}(x) \right) = \frac{1}{h(a)x}$$

$$\frac{d}{dx} \left((\ln(x)) = \frac{1}{\sqrt{1-x^{2}}} \qquad \frac{d}{dx} \left(\log_{h}(x) \right) = -\frac{1}{\sqrt{1-x^{2}}} \\ \frac{d}{dx} \left(\tan^{-1}(x) \right) = \frac{1}{1+x^{2}} \qquad \frac{d}{dx} \left(\sec^{-1}(x) \right) = -\frac{1}{|x|\sqrt{x^{2}-1}} \\ \frac{d}{dx} \left(\cot^{-1}(x) \right) = -\frac{1}{1+x^{2}} \qquad \frac{d}{dx} \left(\sec^{-1}(x) \right) = -\frac{1}{|x|\sqrt{x^{2}-1}} \\ \frac{d}{dx} \left(\cot^{-1}(x) \right) = -\frac{1}{1+x^{2}} \qquad \frac{d}{dx} \left(\sec^{-1}(x) \right) = -\frac{1}{|x|\sqrt{x^{2}-1}} \\ \frac{d}{dx} \left(\cot^{-1}(x) \right) = -\frac{1}{1+x^{2}} \qquad \frac{d}{dx} \left(\sec^{-1}(x) \right) = -\frac{1}{|x|\sqrt{x^{2}-1}} \\ \end{array}$$

Examples: 1) Find the derivatives of
$$\ln(x)$$
 and $\log_{e}(x)$
for $a > 0$.
The f(x) = e^x, f'(x) = $\ln(x)$ and f'(x) = e^x
 $(f'')'(x) = \frac{1}{f'(f'(x))} = \frac{1}{e^{\ln(x)}} = \frac{1}{x}$
So $\left[\frac{d}{dx}(\ln(x)) = \frac{1}{x}\right]^{*}$ memorize
The f(x) = a^x , $f''(x) = \log_{e}(x)$ and $f'(x) = \ln(a) a^x$.
 $(f'')'(x) = \frac{1}{x}$
So $\left[\frac{d}{dx}(\log_{e}(x)) = \frac{1}{\ln(a)x}\right]^{*}$ memorize
Remarks: the second formula also follows from $\log_{e}(x) = \frac{\ln(x)}{\ln(a)}$
 $\frac{d}{dx}(\log_{e}(x)) = \frac{d}{dx}(\frac{\ln(x)}{\ln(a)}) = \frac{1}{\ln(a)} \frac{d}{dx}(\ln(x)) = \frac{1}{\ln(a)}, \frac{1}{x} = \frac{1}{\ln(a)x}$
We can also use implicit differentiation to find there derivatives.
The g(x), then $e^3 = x$ and we want to find $\frac{d}{dx}$
 $\frac{d}{dx}(e^3 = x)$
 $\frac{d}{dx}(e^3 = x)$
 $\frac{d}{dx}(\ln(x)) = \frac{1}{x}$

2) Find the derivatives of sin-1, cos-1, tan-1, sec-1, cot-1 and csc⁻¹ • $\Theta = \sin^{-1}(x) = \arcsin(x)$ is the angle in $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ such that $\sin(\theta) = x$. We want to find $\frac{d\theta}{dx}$. $\frac{d}{dx}\left(\begin{array}{c} \sin(\theta) = x \\ \frac{d}{dx} \end{array}\right) = \frac{d\theta}{dx} = \frac{1}{2} \frac{d$ To express cos(O) in terms of x, use Pythagorean identity $\cos(\theta)^2 = 1 - \sin(\theta)^2 = 1 - x^2$ since $\sin(\theta) = x$. $=) \cos(\theta) = \pm \sqrt{1 - x^2} = \sqrt{1 - x^2}$ θ in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, so $\cos(\theta) \ge 0$. So $\frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$ • $\Theta = \cos^{-1}(x) = \arccos(x)$ is the angle in $[o,\pi]$ such that $\cos(9) = x$. We want to find $\frac{d\theta}{dx}$ $\frac{d}{dx}\left(\begin{array}{c}\cos\left(\theta\right)=x\\-\sin\left(\theta\right)\frac{d\theta}{dx}=1\end{array}\right)=\frac{d\theta}{dx}\left(\begin{array}{c}\theta\\-\sin\left(\theta\right)\frac{d\theta}{dx}=1\end{array}\right)$ To express $sin(\theta)$ in terms of x, we use the Pythagorean identity $\sin(\theta)^2 = (-\cos(\theta)^2 = 1 - x^2 \sin(\theta) = x.$ \Rightarrow sin(9) = $2\sqrt{1-x^2} = \sqrt{1-x^2}$ $\sigma \in (\theta)$ as $[\pi, \sigma]$ if θ So $\frac{d}{dx}(\omega \epsilon^{-\prime}(x)) = -\frac{1}{\sqrt{1-x^2}}$ memorize

•
$$\Theta = \tan^{-1}(x) = \arctan(x)$$
 is the angle in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such
that $\tan(\Theta) = x$. We want to find $\frac{d\Theta}{dx}$.
 $\frac{d}{dx} \left(\tan(\Theta) = x \right)$ $\frac{d\Theta}{dx} = \frac{1}{dx}$
 $\frac{d}{dx} \left(\tan(\Theta) = x \right)$ $\frac{d\Theta}{dx} = \frac{1}{dx}$
 $\frac{d}{dx} \left(\sec(\Theta)^2 \frac{d\Theta}{dx} = 1 + \frac{d\Theta}{dx} + \frac{1}{\sec(\Theta)^2} \right)$
To express $\sec(\Theta)^2$ in terms of x , use Pythagorean
identity $\sec(\Theta)^2 = 1 + \tan(\Theta)^2 = 1 + x^2$ since $\tan(\Theta) = x$.
So $\frac{d}{dx} (\tan^{-1}(x)) = \frac{1}{1 + x^2}$ memorize
• $\Theta = \sec^{-1}(x) = \arccos(x)$ is the angle in $[0, \frac{\pi}{2}, 0] (\frac{\pi}{2}, \pi]$
such that $\sec(\Theta) = x$. We want to find $\frac{d\Theta}{dx}$.
 $\frac{d}{dx} (\sec(\Theta) = x)$ We want to find $\frac{d\Theta}{dx}$.
 $\frac{d}{dx} (\sec(\Theta) = x)$ To express $\tan(\Theta)$ in terms of x ,
we use the Pythagorean identity $\tan(\Theta)^2 = \sec^{-1}(\Theta)^2 - 1 = x^{2-1}$
So $\tan(\Theta) = \frac{1}{x\sqrt{x^2-1}}$ if Θ in $[\Theta, \frac{\pi}{2}]$, i.e. $\sec(\Theta) = x > 0$.
 $\frac{1}{x\sqrt{x^2-1}}$ if Θ in $[\Theta, \frac{\pi}{2}]$, i.e. $\sec(\Theta) = x < 0$.
So $\frac{d\Theta}{dx} (\sec^{-1}(x)) = \frac{1}{|x|\sqrt{x^2-1}}}$ memorize

•
$$\Theta : \cot^{-1}(x) = \operatorname{arccot}(x)$$
 is the angle in (o, π) such
that $\cot(\Theta) = x$. We want to find $\frac{d\Theta}{dx}$.
 $\frac{d}{dx} \left(-\cot(\Theta)^2 = x$.
 $\frac{d}{dx} \left(-\cot(\Theta)^2 = x + \frac{d\Theta}{dx} + \frac{d\Theta}{dx} + \frac{d\Theta}{dx} + \frac{1}{\cot(\Theta)^2} + \frac{1}{\cot(\Theta)^2} + \frac{1}{\cot(\Theta)^2} + \frac{1}{\cot(\Theta)^2} + \frac{1}{(\cot(\Theta)^2 + 1)^2} + \frac{1}{(\cot(\Theta)^2$

3) Let
$$f(x) = x^3 + 2x + 7$$
. Find an equation of the tangent line to $y = f''(x)$ at $x = 7$.
First, find $f''(7)$. For this we need to solve $f(x) = 7$
 $x^3 + 2x + 7 = 7$
 $x^3 + 2x = 0$
 $x = 0$ or $x^3 + 2 = 0$
 $x = 0$ or $x^3 + 2 = 0$
 $x = 0$ or $x^3 + 2 = 0$
 $x = 0$ or $x^{3} + 2 = 0$
 $x = 0$ or $x^{3} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$
 $x = 0$
 $x = 0$ or $x^{1} + 2 = 0$
 $x = 0$
 x

Slope:
$$(f^{-1})'(f(2)) = \frac{1}{f'(2)} = \frac{1}{3}$$
.

So the equation is
$$y = -\frac{1}{3}(x-1) + 2$$

5) Calculate the derivatives of the following functions.
a)
$$f(x) = \ln(\tan^{-1}(5x))$$

b) $g(x) = \sec^{-1}(\frac{2}{x})$
c) $h(x) = \sin^{-1}(7-x)^2 + 5\sqrt{\ln(x)}$
d) $k(x) = \frac{1}{x\ln(x)} + \ln(11)$

$$a) f'(x) = \frac{d}{dx} \left(\ln(\tan^{-1}(5x)) \right)$$

$$\frac{1}{\tan^{-1}(5x)}, \frac{1}{1+(5x)^{2}}, \frac{5}{5} = \frac{5}{\tan^{-1}(5x)(1+25x^{2})}$$

b)
$$g'(x) = \frac{d}{dx} \left(\sec^{-1} \left(\frac{2}{x} \right) \right) = \frac{1}{\left| \frac{2}{x} \right| \sqrt{\left(\frac{2}{x}\right)^2 - 1}} \cdot \left(-\frac{2}{x^2} \right) = -\frac{1}{|x| \sqrt{\frac{4}{x^2} - 1}}$$

$$= \boxed{\frac{1}{\sqrt{4-x^2}}}$$

c)
$$h'(x) = \frac{d}{dx} (\sin^{-1}(7-x)^2 + 5\sqrt{\ln(x)})$$

$$= 2\sin^{-1}(7-x) \frac{1}{\sqrt{1-(7-x)^{2}}} + \frac{5}{2\sqrt{\ln(x)}x}$$

$$\frac{d}{dx} \left(\frac{1}{x \ln(x)} + \frac{1}{\ln(11)} \right) = \frac{\frac{d}{dx} (x \ln(x))}{(x \ln(x))^2}$$

$$= \frac{\ln(x) + x \frac{1}{x}}{(x \ln(x))^2} = \frac{\ln(x) + 1}{(x \ln(x))^2}$$

Logarithmic Differentiation: method to compute derivatives
for functions involving many factors or exponents, or
with base and exponents both depending on x.
Basic example:
$$y \equiv x^{x}$$
, calculate $\frac{dy}{dx}$.
This is neither an exponential (base depends on x)
nor a power (exponent depends on x). So we
cannot use any of the basic rules.
With logarithmic differentiation:
 $y \equiv x^{x}$) Step 1: take h
 $\ln(y) \equiv \ln(x^{x})$) Step 2: simplify
 $\ln(y) \equiv x\ln(x)$ + $\frac{1}{x} \equiv \ln(x) \pm 1$, See 3: solve for y'
 $y' \equiv y(\ln(x) \pm 1)$) Step 4: replace y
 $y' \equiv x^{x}(\ln(x) \pm 1)$) Step 4: replace y
 $y' \equiv e^{x\ln(x)}$ and we the chain rule.
Examples: compute the derivatives of the following functions
using logarithmic differentiation.
1) $y = (3x-1)^{1x}$ 2) $y \equiv \frac{(x^{2}-1)^{17}\sqrt{x-3}}{act(xx)^{2}}$

$$\begin{array}{l} 1 \\ y = (3x-1)^{\frac{1}{2x}} \\ \frac{d}{dx} \begin{pmatrix} \ln(y) = \ln((3x-1)^{\frac{1}{2x}}) = \sqrt{x}\ln(3x-1) \\ \frac{d}{dx} \begin{pmatrix} \frac{1}{y}y' = \frac{1}{2\sqrt{x}}\ln(3x-1) + \sqrt{x} \cdot \frac{3}{3x-1} = \frac{\ln(3x-1)}{\sqrt{x}} + \frac{3\sqrt{x}}{3x-1} \\ y' = y\left(\frac{\ln(3x-1)}{\sqrt{x}} + \frac{3\sqrt{x}}{3x-1}\right) = \left[(3x-1)^{\frac{1}{2x}}\left(\frac{\ln(3x-1)}{\sqrt{x}} + \frac{3\sqrt{x}}{3x-1}\right)\right] \\ \lambda \\ y = \left(\frac{(x^2-1)^{\frac{1}{2x}}\sqrt{x-3}}{(x+1)^{\frac{1}{2x}}}\right) = \left[12\ln(x^2-1) + \frac{1}{2}\ln(x-3) - 44\ln(x+1)\right] \\ \frac{d}{dx} \begin{pmatrix} 1 \\ y' = \frac{34x}{(x+1)^{\frac{1}{2x}}} + \frac{1}{2(x-3)} - \frac{44}{x+1} \\ \frac{1}{y}y' = \frac{34x}{x^2-1} + \frac{1}{2(x-3)} - \frac{44}{x+1} \\ y' = y\left(\frac{34x}{x^2-1} + \frac{1}{2(x-3)} - \frac{44}{x+1}\right) \\ \end{array}$$

$$\begin{aligned} 4) \quad y &= \frac{x \csc^{-1}(x)}{\cot(\pi_{x})^{2}} \\ &= \ln(y) &= \ln\left(\frac{x \csc^{-1}(x)}{\cot(\pi_{x})^{2}}\right) = \ln(x) + \ln(\csc^{-1}(x)) - 2\ln(\cot(\pi_{x})) \\ \frac{4}{dx} \left(\frac{1}{y}y' = \frac{1}{x} - \frac{1}{1 \times (\sqrt{2^{2} \times 1} \csc^{-1}(x))} + \frac{14 \csc(\pi_{x})^{1}}{\cot(\pi_{x})} \right) \\ &= \frac{y' = y\left(\frac{1}{x} - \frac{1}{1 \times (\sqrt{2^{2} \times 1} \csc^{-1}(x))} + \frac{14 \csc(\pi_{x})^{1}}{\cot(\pi_{x})}\right) \\ &= \left[\frac{x \csc^{-1}(x)}{\cot(\pi_{x})^{2}} \left(\frac{1}{x} - \frac{1}{1 \times (\sqrt{2^{2} \times 1} \csc^{-1}(x))} + \frac{14 \csc(\pi_{x})^{1}}{\cot(\pi_{x})}\right) \right] \\ &= \left[\frac{x \csc^{-1}(x)}{\cot(\pi_{x})^{2}} \left(\frac{1}{x} - \frac{1}{1 \times (\sqrt{2^{2} \times 1} \csc^{-1}(x))} + \frac{14 \csc(\pi_{x})^{1}}{\cot(\pi_{x})}\right) \right] \\ &= \left[\frac{x \csc^{-1}(x)}{\cot(\pi_{x})^{2}} \left(\frac{1}{x} - \frac{1}{1 \times (\sqrt{2^{2} \times 1} \csc^{-1}(x))} + \frac{14 \csc(\pi_{x})^{1}}{\cot(\pi_{x})}\right) \right] \\ &= \left[\frac{x \csc^{-1}(x)}{\cot(\pi_{x})^{2}} \left(\frac{1}{x} - \frac{1}{1 \times (\sqrt{2^{2} \times 1} \csc^{-1}(x))} + \frac{14 \csc(\pi_{x})^{1}}{\cot(\pi_{x})}\right) \right] \\ &= \left[\frac{x \csc^{-1}(x)}{\cot(\pi_{x})^{2}} \left(\frac{1}{x} - \frac{1}{1 \times (\sqrt{2^{2} \times 1} \csc^{-1}(x))} + \frac{14 \csc(\pi_{x})^{1}}{\cot(\pi_{x})}\right) \right] \\ &= \left[\frac{x \csc^{-1}(x)}{\cot(\pi_{x})^{2}} \left(\frac{1}{x} - \frac{1}{1 \times (\sqrt{2^{2} \times 1} \csc^{-1}(x))} + \frac{14 \csc(\pi_{x})^{1}}{\cot(\pi_{x})}\right) \right] \\ &= \left[\frac{x \csc^{-1}(x)}{\cot(\pi_{x})^{2}} \left(\frac{1}{x} - \frac{1}{1 \times (\sqrt{2^{2} \times 1} \csc^{-1}(x))} + \frac{14 \cot(\pi_{x})^{1}}{\cot(\pi_{x})^{2}}\right) \right] \\ &= \left[\frac{x \csc^{-1}(x)}{\cot(\pi_{x})^{2}} \left(\frac{1}{x} - \frac{1}{1 \times (\sqrt{2^{2} \times 1} \csc^{-1}(x))} + \frac{14 \cot(\pi_{x})^{1}}{\cot(\pi_{x})^{2}}\right) \right] \\ &= \left[\frac{x \csc^{-1}(x)}{\cot(\pi_{x})^{2}} \left(\frac{1}{x} - \frac{1}{1 \times (\sqrt{2^{2} \times 1} \csc^{-1}(x))} + \frac{14 \cot(\pi_{x})^{1}}{\cot(\pi_{x})^{2}}\right) \right] \\ &= \left[\frac{x \csc^{-1}(x)}{\cot(\pi_{x})^{2}} \left(\frac{1}{x} - \frac{1}{1 \times (\sqrt{2^{2} \times 1} \csc^{-1}(x))} + \frac{14 \cot(\pi_{x})^{2}}{\cot(\pi_{x})^{2}}\right) \right] \\ &= \left[\frac{x \cot^{-1}(x)}{\cot(\pi_{x})^{2}} \left(\frac{1}{x} - \frac{1}{1 \times (\sqrt{2^{2} \times 1} \cot^{-1}(x))} + \frac{14 \cot(\pi_{x})}{\cot(\pi_{x})^{2}}\right) \right] \\ &= \left[\frac{x \cot^{-1}(x)}{\cot(\pi_{x})^{2}} \left(\frac{1}{x} - \frac{1}{1 \times (\sqrt{2^{2} \times 1} \cot^{-1}(x))} + \frac{14 \cot(\pi_{x})}{\cot(\pi_{x})^{2}}\right) \right] \\ &= \left[\frac{x \cot^{-1}(x)}{\cot(\pi_{x})^{2}} \left(\frac{1}{x} - \frac{1}{1 \times (\sqrt{2^{2} \times 1} \cot^{-1}(x))} + \frac{14 \cot(\pi_{x})}{\cot(\pi_{x})^{2}}\right) \right] \\ &= \left[\frac{x \cot^{-1}(x)}{\cot(\pi_{x})^{2}} \left(\frac{1}{x} - \frac{1}{1 \times (\sqrt{2^{2} \times 1} \cot^{-1}(x))} + \frac{14 \cot(\pi_{x})}{\cot(\pi_{x})^{2}}\right) \right] \\ &= \left[\frac{x \cot^{-1}(x)}{\cot(\pi_{x})^{2}} \left(\frac$$