Sections 3.8-9: Derivatives of Inverse Functions - Worksheet

1. Calculate the derivatives of the following functions.
(a) $f(x)=\sin ^{-1}(4 x)$
(d) $f(x)=\ln (x)^{2}+8 \arccos (-x)$
(g) $f(x)=x^{3 \tan ^{-1}(2 x)}$
(b) $f(x)=\ln (2 \arctan (5 x)+1)$
(e) $f(x)=\cot ^{-1}\left(e^{3 x}\right)$
(h) $f(x)=\cos (x)^{\ln (x)}$
(c) $f(x)=x \sec ^{-1}(7 x)$
(f) $f(x)=\cos (x) \log _{7}(\sec (x))$
(i) $f(x)=(1-5 x)^{x^{2}}$
2. Simplify each of the following. Your answer should not contain any trigonometric or inverse trigonometric functions.
(a) $\cos \left(\sin ^{-1}(x+1)\right)$
(b) $\sin \left(2 \cos ^{-1}(3 x)\right)$
(c) $\csc \left(\tan ^{-1}\left(\frac{2 x}{3}\right)\right)$
(d) $\sec (\theta)$ given that $\cot (\theta)=5$ and $\sin (\theta)<0$
3. Suppose that f is a one-to-one function and that the tangent line to the graph of $y=f(x)$ at $x=3$ is $y=-4 x+5$. Find an equation of the tangent line to the graph of $y=f^{-1}(x)$ at $x=f(3)$.
4. Consider the one-to-one function $f(x)=3 x e^{x^{2}-4}$. Calculate $f(2)$ and find an equation of the tangent line to the graph of $y=f^{-1}(x)$ at $x=f(2)$.
5. Suppose that f and g are differentiable functions such that

$$
\begin{array}{lll}
f(-1)=4, & f(0)=2, & f(1)=4 \\
f^{\prime}(-1)=3, & f^{\prime}(0)=-5, & f^{\prime}(1)=8 \\
g(-1)=2, & g(0)=3, & g(1)=-2 \\
g^{\prime}(-1)=7, & g^{\prime}(0)=-4, & g^{\prime}(1)=6
\end{array}
$$

(a) For $F(x)=\ln \left(f\left(x^{2}\right)+g(x)\right)$, evaluate $F^{\prime}(-1)$.
(b) For $G(x)=\arctan (3 \sqrt{f(x)})$, evaluate $G^{\prime}(1)$.
(c) For $H(x)=2^{f(x)} g(3 x+1)$, evaluate $H^{\prime}(0)$.
(d) [Advanced] For $K(x)=f(2 x)^{g(x)}$, evaluate $K^{\prime}(0)$.

