Rutgers University
Math 151

Sections 3.8-9: Derivatives of Inverse Functions - Worksheet Solutions

1. Calculate the derivatives of the following functions.
(a) $f(x)=\sin ^{-1}(4 x)$

Solution.

$$
f^{\prime}(x)=\frac{1}{\sqrt{1-(4 x)^{2}}} \cdot 4=\frac{4}{\sqrt{1-16 x^{2}}}
$$

(b) $f(x)=\ln (2 \arctan (5 x)+1)$

Solution.

$$
f^{\prime}(x)=\frac{1}{2 \arctan (5 x)+1} \cdot 2 \frac{1}{1+(5 x)^{2}} \cdot 5=\frac{10}{(2 \arctan (5 x)+1)\left(1+25 x^{2}\right)}
$$

(c) $f(x)=x \sec ^{-1}(7 x)$

Solution.

$$
f^{\prime}(x)=\sec ^{-1}(7 x)+x \frac{1}{|7 x| \sqrt{(7 x)^{2}-1}} \cdot 7=\sec ^{-1}(7 x)+\frac{7 x}{|7 x| \sqrt{49 x^{2}-1}}
$$

(d) $f(x)=\ln (x)^{2}+8 \arccos (-x)$

Solution.

$$
f^{\prime}(x)=2 \ln (x) \cdot \frac{1}{x}+8 \cdot-\frac{1}{\sqrt{1-(-x)^{2}}} \cdot-1=\frac{2 \ln (x)}{x}+\frac{8}{\sqrt{1-x^{2}}}
$$

(e) $f(x)=\cot ^{-1}\left(e^{3 x}\right)$

Solution.

$$
f^{\prime}(x)=-\frac{1}{1+\left(e^{3 x}\right)^{2}} \cdot e^{3 x} \cdot 3=-\frac{3 e^{3 x}}{1+e^{6 x}}
$$

(f) $f(x)=\cos (x) \log _{7}(\sec (x))$

Solution.

$$
f^{\prime}(x)=-\sin (x) \log _{7}(\sec (x))+\cos (x) \cdot \frac{1}{\ln (7) \sec (x)} \cdot \sec (x) \tan (x)=\sin (x) \log _{7}(\sec (x))+\frac{\sin (x)}{\ln (7)}
$$

(g) $f(x)=x^{3 \tan ^{-1}(2 x)}$

Solution. With $y=x^{3 \tan ^{-1}(2 x)}$ we have

$$
\ln (y)=\ln \left(x^{3 \tan ^{-1}(2 x)}\right)=3 \tan ^{-1}(2 x) \ln (x)
$$

Differentiating with respect to x, we obtain

$$
\begin{aligned}
\frac{y^{\prime}}{y} & =\frac{6 \ln (x)}{1+4 x^{2}}+\frac{3 \tan ^{-1}(2 x)}{x} \\
\Rightarrow y^{\prime} & =y\left(\frac{6 \ln (x)}{1+4 x^{2}}+\frac{3 \tan ^{-1}(2 x)}{x}\right) \\
& =x^{3 \tan ^{-1}(2 x)}\left(\frac{6 \ln (x)}{1+4 x^{2}}+\frac{3 \tan ^{-1}(2 x)}{x}\right)
\end{aligned}
$$

(h) $f(x)=\cos (x)^{\ln (x)}$

Solution. With $y=\cos (x)^{\ln (x)}$ we have

$$
\ln (y)=\ln \left(\cos (x)^{\ln (x)}\right)=\ln (x) \ln (\cos (x))
$$

Differentiating with respect to x, we obtain

$$
\begin{aligned}
\frac{y^{\prime}}{y} & =\frac{\ln (\cos (x))}{x}+\ln (x) \frac{-\sin (x)}{\cos (x)} \\
& =\frac{\ln (\cos (x))}{x}-\ln (x) \tan (x) \\
\Rightarrow y^{\prime} & =y\left(\frac{\ln (\cos (x))}{x}-\ln (x) \tan (x)\right) \\
& =\cos (x)^{\ln (x)}\left(\frac{\ln (\cos (x))}{x}-\ln (x) \tan (x)\right)
\end{aligned}
$$

(i) $f(x)=(1-5 x)^{x^{2}}$

Solution. With $y=(1-5 x)^{x^{2}}$ we have

$$
\ln (y)=\ln \left((1-5 x)^{x^{2}}\right)=x^{2} \ln (1-5 x)
$$

Differentiating with respect to x, we obtain

$$
\begin{aligned}
\frac{y^{\prime}}{y} & =2 x \ln (1-5 x)+x^{2} \frac{-5}{1-5 x} \\
& =2 x \ln (1-5 x)-\frac{5 x^{2}}{1-5 x} \\
\Rightarrow y^{\prime} & =y\left(2 x \ln (1-5 x)-\frac{5 x^{2}}{1-5 x}\right) \\
& =(1-5 x)^{x^{2}}\left(2 x \ln (1-5 x)-\frac{5 x^{2}}{1-5 x}\right)
\end{aligned}
$$

2. Simplify each of the following. Your answer should not contain any trigonometric or inverse trigonometric functions.
(a) $\cos \left(\sin ^{-1}(x+1)\right)$

Solution. We use the Pythagorean identity $\cos (\theta)^{2}+\sin (\theta)^{2}=1$ with $\theta=\sin ^{-1}(x+1)$. By definition of $\sin ^{-1}$, we know that $\sin (\theta)=x+1$ and θ is in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. We get

$$
\begin{aligned}
& \cos (\theta)^{2}+(x+1)^{2}=1 \\
& \cos (\theta)^{2}=1-(x+1)^{2}=-2 x-x^{2} \\
& \sqrt{\cos (\theta)^{2}}=\sqrt{-2 x-x^{2}} \\
& |\cos (\theta)|=\sqrt{-2 x-x^{2}} \\
& \cos (\theta)= \pm \sqrt{-2 x-x^{2}}
\end{aligned}
$$

To determine which sign is appropriate, recall that $\theta=\sin ^{-1}(x+1)$ is an angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, so $\cos (\theta) \geqslant 0$. Hence

$$
\cos \left(\sin ^{-1}(x)\right)=\sqrt{-2 x-x^{2}} .
$$

(b) $\sin \left(2 \cos ^{-1}(3 x)\right)$

Solution. We start by using the identity

$$
\sin (2 \theta)=2 \sin (\theta) \cos (\theta)
$$

with $\theta=\cos ^{-1}(3 x)$. This means that $\cos (\theta)=3 x$ and that θ is in $[0, \pi]$. To find $\sin (\theta)$, we use the Pythagorean identity $\cos (\theta)^{2}+\sin (\theta)^{2}=1$, which gives

$$
\begin{aligned}
& (3 x)^{2}+\sin (\theta)^{2}=1 \\
& \sin (\theta)^{2}=1-9 x^{2} \\
& \sqrt{\sin (\theta)^{2}}=\sqrt{1-9 x^{2}} \\
& |\sin (\theta)|=\sqrt{1-9 x^{2}} \\
& \sin (\theta)=\sqrt{1-9 x^{2}} \text { since } \sin (\theta)>0 \text { as } 0 \leqslant \theta \leqslant \pi
\end{aligned}
$$

Therefore

$$
\sin \left(2 \cos ^{-1}(3 x)\right)=2 \sqrt{1-9 x^{2}}(3 x)=6 x \sqrt{1-9 x^{2}} .
$$

(c) $\csc \left(\tan ^{-1}\left(\frac{2 x}{3}\right)\right)$

Solution. Let us solve this one with a right triangle. Consider a right triangle with base angle $\theta=\tan ^{-1}\left(\frac{2 x}{3}\right)$. Then $\tan (\theta)=\frac{2 x}{3}$, so we can take the opposite side to be $2 x$ and the adjacent to be 3. By the Pythagorean identity, the hypotenuse is $\sqrt{9+4 x^{2}}$.

We get

$$
\csc \left(\tan ^{-1}\left(\frac{2 x}{3}\right)\right)=\frac{\sqrt{9+4 x^{2}}}{2 x}
$$

Remark: in general, this method only yields the correct answer up to a sign. Here however, there is no sign issue as θ is an angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and csc and tan have the same sign on this interval, which is also that of x.
(d) $\sec (\theta)$ given that $\cot (\theta)=5$ and $\sin (\theta)<0$

Solution. We use the Pythagorean identity $\sec (\theta)^{2}=1+\tan (\theta)^{2}$, which gives

$$
\begin{aligned}
& \sec (\theta)^{2}=1+\frac{1}{\cot (\theta)^{2}}=1+\frac{1}{25}=\frac{26}{25} \\
& \sqrt{\sec (\theta)^{2}}=\sqrt{\frac{26}{25}} \\
& |\sec (\theta)|=\frac{2 \sqrt{6}}{25} \\
& \sec (\theta)= \pm \frac{2 \sqrt{6}}{25}
\end{aligned}
$$

To find the appropriate sign, observe that $\cot (\theta)>0$ and $\sin (\theta)<0$, which means that θ is an angle in quadrant III. Therefore, $\sec (\theta)<0$. So

$$
\sec (\theta)=-\frac{2 \sqrt{6}}{5} .
$$

3. Suppose that f is a one-to-one function and that the tangent line to the graph of $y=f(x)$ at $x=3$ is $y=-4 x+5$. Find an equation of the tangent line to the graph of $y=f^{-1}(x)$ at $x=f(3)$.

Solution. We have $f(3)=-4 \cdot 3+5=-7$ and $f^{\prime}(3)=-4$. So

$$
f^{-1}(-7)=3, \quad\left(f^{-1}\right)^{\prime}(-7)=\frac{1}{f^{\prime}\left(f^{-1}(-7)\right)} \frac{1}{f^{\prime}(3)}=-\frac{1}{4} .
$$

Hence, the tangent line has equation $y=-\frac{1}{4}(x+7)-3$.
4. Consider the one-to-one function $f(x)=3 x e^{x^{2}-4}$. Calculate $f(2)$ and find an equation of the tangent line to the graph of $y=f^{-1}(x)$ at $x=f(2)$.

Solution. We have

$$
f(2)=3 \cdot 2 e^{2^{2}-4}=6 .
$$

So $f^{-1}(6)=2$. To find $\left(f^{-1}\right)^{\prime}(6)$, we will need $f^{\prime}(2)$. We have

$$
f^{\prime}(2)=\left[3 e^{x^{2}-4}+3 x e^{x^{2}-4} 2 x\right]_{\mid x=2}=27
$$

So

$$
f^{-1}(6)=\frac{1}{f^{\prime}\left(f^{-1}(6)\right)}=\frac{1}{f^{\prime}(2)}=\frac{1}{27}
$$

Hence the tangent line has equation $y=\frac{1}{27}(x-6)+2$.
5. Suppose that f and g are differentiable functions such that

$$
\begin{array}{lll}
f(-1)=9, & f(0)=2, & f(1)=4, \\
f^{\prime}(-1)=3, & f^{\prime}(0)=-5, & f^{\prime}(1)=8 \\
g(-1)=2, & g(0)=3, & g(1)=-2 \\
g^{\prime}(-1)=7, & g^{\prime}(0)=-4, & g^{\prime}(1)=6
\end{array}
$$

(a) For $F(x)=\ln \left(f\left(x^{2}\right)+g(x)\right)$, evaluate $F^{\prime}(-1)$.

Solution. We have

$$
F^{\prime}(x)=\frac{1}{f\left(x^{2}\right)+g(x)} \cdot\left(f^{\prime}\left(x^{2}\right) 2 x+g^{\prime}(x)\right)=\frac{2 f^{\prime}\left(x^{2}\right) x+g^{\prime}(x)}{f\left(x^{2}\right)+g(x)}
$$

So

$$
F^{\prime}(-1)=\frac{2 f^{\prime}\left((-1)^{2}\right)(-1)+g^{\prime}(-1)}{f\left((-1)^{2}\right)+g(-1)}=\frac{-2 f^{\prime}(1)+g^{\prime}(-1)}{f(1)+g(-1)}=\frac{-2 \cdot 8+7}{4+2}=-\frac{3}{2}
$$

(b) For $G(x)=\arctan (3 \sqrt{f(x)})$, evaluate $G^{\prime}(1)$.

Solution. We have

$$
G^{\prime}(x)=\frac{1}{1+(3 \sqrt{f(x)})^{2}} \cdot \frac{3}{2 \sqrt{f(x)}} \cdot f^{\prime}(x)=\frac{3 f^{\prime}(x)}{2 \sqrt{f(x)}(1+9 f(x))}
$$

So

$$
G^{\prime}(1)=\frac{3 f^{\prime}(1)}{2 \sqrt{f(1)}(1+9 f(1))}=\frac{3 \cdot 8}{2 \sqrt{4}(1+9 \cdot 4)}=\frac{6}{37}
$$

(c) For $H(x)=2^{f(x)} g(3 x+1)$, evaluate $H^{\prime}(0)$.

Solution. We have

$$
H^{\prime}(x)=\ln (2) 2^{f(x)} f^{\prime}(x) g(3 x+1)+2^{f(x)} g^{\prime}(3 x+1) \cdot 3=2^{f(x)}\left(\ln (2) f^{\prime}(x) g(3 x+1)+3 f(x) g^{\prime}(3 x+1)\right)
$$

So

$$
H^{\prime}(0)=2^{f(0)}\left(\ln (2) f^{\prime}(0) g(1)+3 f(0) g^{\prime}(1)\right)=2^{2}(\ln (2)(-5)(-2)+3 \cdot 2 \cdot 6)=8(5 \ln (2)+18) .
$$

(d) [Advanced] For $K(x)=f(2 x)^{g(x)}$, evaluate $K^{\prime}(0)$.

Solution. We have

$$
\ln (K(x))=\ln \left(f(2 x)^{g(x)}\right)=g(x) \ln (f(2 x))
$$

Taking derivatives with respect to x, we get

$$
\begin{aligned}
\frac{K^{\prime}(x)}{K(x)} & =g^{\prime}(x) \ln (f(2 x))+g(x) \frac{1}{f(2 x)} \cdot f^{\prime}(2 x) \cdot 2 \\
& =g^{\prime}(x) \ln (f(2 x))+\frac{2 g(x) f^{\prime}(2 x)}{f(2 x)} \\
\Rightarrow K^{\prime}(x) & =K(x)\left(g^{\prime}(x) \ln (f(2 x))+\frac{2 g(x) f^{\prime}(2 x)}{f(2 x)}\right) \\
& =f(2 x)^{g(x)}\left(g^{\prime}(x) \ln (f(2 x))+\frac{2 g(x) f^{\prime}(2 x)}{f(2 x)}\right) .
\end{aligned}
$$

So

$$
K^{\prime}(0)=f(0)^{g(0)}\left(g^{\prime}(0) \ln (f(0))+\frac{2 g(0) f^{\prime}(0)}{f(0)}\right)=2^{3}\left(-4 \ln (2)+\frac{2 \cdot 3(-5)}{2}\right)=-8(4 \ln (2)+15)
$$

