Learning Goals

functi	4.1.2 Find absolute extrema and where they occur on finite closed intervals.																	
4.1.2													21-44.					
$\frac{1}{4}$ 1 2																		
endpo	ints fo	or func	tions.	, iocal		solute	extren	na, and	uoma		43-							
4.1.4 Understand concepts related to extreme values of functions.											65-	65-74, 76.						
4.1.5	.5 Solve applications involving extreme values.										75-	75-78.						

Definitions

Absolute / global maximum on [a,b]:
 a y-value f(c) such that
 f(c) ≥ f(x) for all x in [a,b].
 Ly the "highest peak".

y = f(x)

X

5

3

We have similar definitions for <u>local/relative minimum</u> ("valleys" on the graph) and <u>absolute/global minimum on [a, b]</u> ("lowest valley")

<u>Extremum</u> or <u>extreme</u> values : maximum or minimum. (plural : extrema, maxima, minima)

×

Examples: 1) Find the absolute and local extrema of the function sketched on [-2,5].

5 †

3

2

- 2

- 1

A function may not have any extrema on an interval.

Extreme Value Theorem : if f(x) is a <u>continuous</u> function on a <u>closed</u> and <u>bounded</u> interval [a, b], then f has both an absolute maximum and an absolute minimum on [a,b].

All three conditions are necessary, otherwise the EVT may fail. Examples:

Method to find absolute extrema af a continuous function f on a closed and bounded interval [a,b].

- 1. Find the critical points of f in (a, b). These are the potential locations of extrema by Fermat's Theorem.
- 2. Evaluate f (NOT f') at the critical points and endpoints a, b
- 3. Largest value = absolute max. Least value = absolute min.

Examples: 1) Find the absolute extrema of $f(x) = x^3 - 3x + 4$ on [0,3].

- $f'(x) = 3x^{2} 3 = 3(x^{2} 1) = 3(x 1)(x + 1)$ Critical points: $f'(x) = 0 \Rightarrow 3(x 1)(x + 1) = 0 \Rightarrow x = 1 = 1$. $f'(x) = 0 \Rightarrow 3(x 1)(x + 1) = 0 \Rightarrow x = 1 = 1$
- CPs in (0,3): x=1. Now we evaluate f at the critical point in (0,3) and the endpoints.

2) Find the absolute extrema of
$$f(x) = 1 + (x^2 - q)^{\frac{9}{3}}$$
 on $[-2, 5]$.
 $f'(x) = \frac{2}{3}(x^2 - q)^{-1/2}(2x) = \frac{4x}{3(x^2 - q)^{1/3}}$.
Gritical points : $f'(x) = 0 = 4x = 0 = x = 0$.
 $f'(x) DNE = 3(x^2 - q)^{1/3} = 0 = x^2 = 9 = x = 3, -3$
The CPS in $(-2, 5)$ are $x = 0, 3$.
 $\frac{x}{1 + q^{4/3}}$.
Absolute max. is $1 + 16^{2/3}$.
 $0 = 1 + q^{4/3}$.
Absolute max. is $1 + 16^{2/3}$.
 $3 = 1$ least
 $5 = 1 + (6^{2/3})$ largest
 $0 = 1 + q^{4/3}$.
 $3 = 1$ least
 $4 = 1 + 16^{2/3}$.
 $1 = 1 = 1$ least
 $3 = 1$ least
 $3 = 1$ least
 $3 = 1$ least
 $4 = 1 + 16^{2/3}$.
 $3 = 1 = 1$ least
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $3 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $3 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $3 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $3 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $3 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $3 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $3 = 1 + 16^{2/3}$.
 $3 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $3 = 3 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 $4 = 1 + 16^{2/3}$.
 4

 $f'(x) D \in A = 0.$

5) Find the absolute extrema of
$$f(x) = e^{-x} \sin(x)$$
 on $[0, 2\pi]$.
 $f'(x) = -e^{-x} \sin(x) + e^{-x} \cos(x) = e^{-x} (\cos(x) - \sin(x))$.
Critical points: $f'(x) = 0 \Rightarrow e^{-x} = 0$ $\cos(x) - \sin(x) = 0$
no tolution $\cos(x) = \sin(x)$
 $x = \frac{\pi}{4}, \frac{5\pi}{4}$.
CP3 in $[0, 2\pi]$ are $x = \frac{\pi}{4}, \frac{5\pi}{4}$.
 $x = \frac{f(x)}{4}$ are $x = \frac{\pi}{4}, \frac{5\pi}{4}$.
 $\frac{x + f(x)}{5\pi/4} = e^{\frac{5\pi}{4}} \frac{5\pi}{2}$
 $\frac{5\pi}{4} = e^{\frac{5\pi}{4}} \frac{5\pi}{4}$
 $\frac{5\pi}$

_

+

+

_