Learning Goals

Learning Goal	Homework Problems
4.1.1 Find extreme values and where they occur using the graph of the function.	$1-20,79-82$.
4.1.2 Find absolute extrema and where they occur on finite closed intervals.	$21-44$.
4.1.3 Find critical points, local and absolute extrema, and domain endpoints for functions.	$45-64$.
4.1.4 Understand concepts related to extreme values of functions.	$65-74,76$.
4.1.5 Solve applications involving extreme values.	$75-78$.

Definitions

- Local/relative maximum : a y-value $f(c)$ such that $f(c) \geqslant f(x)$ for x near c. \rightarrow a "peak" on the graph.
- Absolute/global maximum on $[a, b]$: a y-value $f(c)$ such that $f(c) \geqslant f(x)$ for all x in $[a, b]$. 4 the "highest peak".

We have similar definitions for local/relative minimum ("valleys" on the graph) and absolute / global minimum on $[a, b]$ ("lowest valley")

Extremum or extreme values: maximum or minimum. (plural: extrema, maxima, minima)

Examples: 1) Find the absolute and local extrema of the function sketched on $[-2,5]$.

- Local maxima:

$$
f(2)=5, \quad f(4)=4, \quad f(-1)=2 .
$$

- Absolute maximum :

$$
f(2)=5
$$

- Local minima:

$$
f(-2)=1, f(3)=3, f(0)=0, f(5)=-1
$$

2) Find the absolute extrema of $f(x)=x^{2}+1$ on
a) $[-2,1]$ and
b) $(-2,1]$.
a)

b)

Absolute max $=5=f(-2)$
Absolute $\min =1=f(0)$
Absolute max : none
Absolute $\min =1=f(0)$

Remarks:

- The same max/min value can occur at multiple x - values.

- A function may not have any extrema on an interval.

Extreme Value Theorem: if $f(x)$ is a continuous function on a closed and bounded interval $[a, b]$, then f has both an absolute maximum and an absolute minimum on $[a, b]$.

All three conditions are necessary, otherwise the EVT may fail. Examples:

not continuous no absolute max.

$[a, b)$ not closed no absolute min.

$[a, \infty)$ unbounded no absolute min.

Finding extrema :

Fermat's Theorem : if f has a local extrema at $x=c$ and c is in the interior of the domain (not an endpoint), then

$$
f^{\prime}(c)=0 \quad \text { or } \quad f^{\prime}(c) \text { DNE. }
$$

we say that $x=c$ is a critical point if c is in the interior of the domain of f and $f^{\prime}(c)=0$ or $f^{\prime}(c)$ ONE

Fermat's theorem tells us local extrema occur at critical points, but not every critical point will give a local extremum.
Example:

The critical points are:

$$
\begin{array}{ll}
x=-2,0,3 & \left(f^{\prime}=0\right) \\
x=-1,2 & \left(f^{\prime} \text { DUE }\right)
\end{array}
$$

But no extrema occur at

$$
x=-1,3 .
$$

Explanation for Fermat's Theorem: assume f has a max.
slope >0 at $x=c$ and $f^{\prime}(c)$ exists.

$$
\begin{aligned}
& f^{\prime}(c)=\lim _{z \rightarrow c^{-}} \frac{f(z)-f(c)}{z-c} \geqslant 0 \\
& f^{\prime}(c)=\lim _{z \rightarrow c^{+}} \frac{f(z)-f(c)}{z-c} \leqslant 0
\end{aligned}
$$

So $f^{\prime}(c)=0$.

Method to find absolute extrema of a continuous function f on a closed and bounded interval $[a, b]$.

1. Find the critical points of f in (a, b). These are the potential locations of extrema by Fermat's Theorem.
2. Evaluate f (not $\left.f^{\prime}\right)$ at the critical points and endpoints a, b
3. Largest value $=$ absolute \max.

Least value $=$ absolute min .

Examples: 1) Find the absolute extrema of $f(x)=x^{3}-3 x+4$ on $[0,3]$.

$$
f^{\prime}(x)=3 x^{2}-3=3\left(x^{2}-1\right)=3(x-1)(x+1)
$$

Critical points: $\quad f^{\prime}(x)=0 \Rightarrow 3(x-1)(x+1)=0 \Rightarrow x=1,-1$.
$f^{\prime}(x)$ DNE \Rightarrow none
CPs in $(0,3)$: $x=1$.
Now we evaluate f at the critical point in $(0,3)$ and the endpoints.

x	$f(x)$
0	4
1	2
3	22
least	

Absolute max. is 22 (reached at $x=3$)
Absolute min . is 2 (reached at $x=1$)
2) Find the absolute extrema of $f(x)=1+\left(x^{2}-9\right)^{2 / 3}$ on $[-2,5]$.

$$
f^{\prime}(x)=\frac{2}{3}\left(x^{2}-9\right)^{-1 / 3}(2 x)=\frac{4 x}{3\left(x^{2}-9\right)^{1 / 3}} .
$$

Critical points: $f^{\prime}(x)=0 \Rightarrow 4 x=0 \Rightarrow x=0$.

$$
f^{\prime}(x) \text { DNE } \Rightarrow 3\left(x^{2}-9\right)^{1 / 3}=0 \Rightarrow x^{2}=9 \Rightarrow x=3,-3
$$

The CPs in $(-2,5)$ are $x=0,3$.

x	$f(x)$
-2	$1+5^{2 / 3}$
0	$1+9^{2 / 3}$
3	1
5	$1+16^{2 / 3}$

Absolute max. is $1+16^{2 / 3}$
Absolute min. is 1

3) Find the absolute extrema of $f(x)=x^{2}-6|x|-2$ on $[-4,1]$

$$
f(x)=\left\{\begin{array}{ll}
x^{2}-6 x-2 & \text { if } x \geqslant 0 \\
x^{2}+6 x-2 & \text { if } x<0
\end{array} \Rightarrow f^{\prime}(x)= \begin{cases}2 x-6 & \text { if } x \geqslant 0 \\
2 x+6 & \text { if } x<0\end{cases}\right.
$$

$f^{\prime}(0)$ DNE since $\lim _{x \rightarrow 0^{+}} 2 x-6=-6 \quad$ slope different on left and $\lim _{x \rightarrow 0^{-}} 2 x+6=6$ right of $x=0$ (corner)

Critical points: $f^{\prime}(x)=0 \Rightarrow \begin{cases}2 x-6=0 \Rightarrow x=3 \\ 2 x+6=0 \Rightarrow x=-3\end{cases}$

$$
f^{\prime}(x) \text { ONE } \Rightarrow x=0
$$

So the CPs in $(-4,1)$ are $x=-3,0$.

x	$f(x)$
-4	-10
-3	-11
0	-2
1	-7

Absolute max. is -2
Absolute min. is -11

4) Find the absolute extrema of $f(x)=\frac{1}{x^{2}}+2 \ln (x)$ on $\left[\frac{1}{\sqrt{e}}, \sqrt{e}\right]$.

$$
f^{\prime}(x)=-\frac{2}{x^{3}}+\frac{2}{x}=\frac{2\left(x^{2}-1\right)}{x^{3}}=\frac{2(x-1)(x+1)}{x^{3}}
$$

Critical points: $f^{\prime}(x)=0 \Rightarrow 2(x-1)(x+1)=0 \Rightarrow x=1,-1$ interval

$$
f^{\prime}(x) \text { DNE } \Rightarrow x^{3}=0 \Rightarrow x=\rho \text { interval }
$$

$C P$ in $\left(\frac{1}{\sqrt{e}}, \sqrt{e}\right): \quad x=1$

x	$f(x)$
$1 / \sqrt{e}$	$e-1$
1	1
\sqrt{e}	$\frac{1}{e}+1$

Absolute max. is e-1
Absolute min. is 1

$$
e \simeq 2.7>2 \text { so } e-1 \simeq 1.7
$$

and $\frac{1}{e}<0.5$ so $\frac{1}{e}+1<1.5$
5) Find the absolute extrema of $f(x)=e^{-x} \sin (x)$ on $[0,2 \pi]$.

$$
f^{\prime}(x)=-e^{-x} \sin (x)+e^{-x} \cos (x)=e^{-x}(\cos (x)-\sin (x)) \text {. }
$$

Critical points: $f^{\prime}(x)=0 \Rightarrow e^{-x}=0$

$$
\cos (x)-\sin (x)=0
$$

no solution

$$
\begin{aligned}
& \cos (x)=\sin (x) \\
& x=\frac{\pi}{4}, \frac{5 \pi}{4} .
\end{aligned}
$$

$f^{\prime}(x)$ DUE \Rightarrow no solution.
CPs in $[0,2 \pi]$ are $x=\frac{\pi}{4}, \frac{5 \pi}{4}$.

x	$f(x)$
0	0
$\pi / 4$	$e^{-\pi / 4} \frac{\sqrt{2}}{2}$
$5 \pi / 4$	$-e^{-5 \pi / 4} \frac{\sqrt{2}}{2}$
2π	0

largest (only positive)
Absolute max. is $e^{-\pi / 4} \frac{\sqrt{2}}{2}$
Absolute min. is $e^{-5 \pi / 4} \frac{\sqrt{2}}{2}$

