Rutgers University Math 151

Section 4.1: Extreme Values - Worksheet Solutions

- 1. Find the absolute extrema of the following functions on the given interval.
 - (a) $f(x) = 2x^3 + 3x^2 12x + 1$ on [-1, 2].

Solution. First, we find the critical points of f in [-1,2]. We have $f'(x) = 6x^2 + 6x - 12 = 6(x+2)(x-1)$.

- f'(x) = 0 gives x = -2, 1.
- f'(x) undefined: no x-values.

So the critical point in [-1, 2] is x = 1. Now, we evaluate f(x) at the endpoints and the critical point.

Therefore, the absolute maximum of f(x) on [-1, 2] is <u>14</u> (reached at x = -1) and the absolute minimum is <u>-6</u> (reached at x = -1).

(b) $f(x) = x(7-x)^{2/5}$ on [1,6].

Solution. First, we find the critical points of f in [1, 6]. We have

$$f'(x) = (7-x)^{2/5} - \frac{2x}{5(7-x)^{3/5}} = \frac{5(7-x) - 2x}{5(7-x)^{3/5}} = \frac{35 - 7x}{5(7-x)^{3/5}}.$$

- f'(x) = 0 gives 35 7x = 0, so x = 5.
- f'(x) undefined gives x = 7.

So the critical point in [1,6] is x = 5. Now, we evaluate f(x) at the endpoints and the critical point.

We need to determine which of these is the largest and which is the least. First, observe that $6 > 6^{2/5}$ since $\frac{2}{5} < 1$. Next, we have $6 < 5 \cdot 4^{1/5}$. To see this, we can compare the 5th power of these numbers to see that $6^5 = 7776 < 5^5 \cdot 4 = 12500$. Therefore, the absolute maximum of f(x) on [1, 6] is $5 \cdot 4^{1/5}$ (reached at x = 5) and the absolute minimum is $6^{2/5}$ (reached at x = 1).

(c) $f(x) = 3x^4 - 10x^3 + 6x^2 - 7$ on [-2, 1].

Solution. First, we find the critical points of f in [-2, 1]. We have $f'(x) = 12x^3 - 30x + 12x = 6x(2x-1)(x-2)$.

• f'(x) = 0 gives $x = 0, \frac{1}{2}, 2$.

• f'(x) undefined: no x-values.

So the critical points in [-2,1] are $x=0,\frac{1}{2}$. Now, we evaluate f(x) at the endpoints and the critical point.

Therefore, the absolute maximum of f(x) on [-2,1] is |145| (reached at x = -2) and the absolute minimum is |-8| (reached at x = 1).

(d) $f(x) = (e^x - 2)^{4/7}$ on $[0, \ln(3)]$.

Solution. First, we find the critical points of f in $[0, \ln(3)]$. We have $f'(x) = \frac{4e^x}{7(e^x - 2)^{3/7}}$.

- f'(x) = 0 gives $4e^x = 0$, which has no solution.
- f'(x) undefined gives $e^x 2 = 0$, so $x = \ln(2)$.

So the critical point in $[0, \ln(3)]$ is $x = \ln(2)$. Now, we evaluate f(x) at the endpoints and the critical point.

Therefore, the absolute maximum of f(x) on $[0, \ln(3)]$ is |1| (reached at x = 0 and $x = \ln(3)$) and the absolute minimum is 0 (reached at $x = \ln(2)$).

(e)
$$f(x) = \frac{\ln(x)}{\sqrt{x}}$$
 on $[1, e^4]$.

Solution. First, we find the critical points of f in $[1, e^4]$. We have $f'(x) = \frac{1}{x^{3/2}} - \frac{\ln(x)}{2x^{3/2}} = \frac{2 - \ln(x)}{2x^{3/2}}$.

- f'(x) = 0 gives $2 \ln(x) = 0$, so $x = e^2$.
- f'(x) undefined gives no solution in the domain of f, which is $(0, \infty)$.

_

So the critical point in $[1, e^4]$ is $x = e^2$. Now, we evaluate f(x) at the endpoints and the critical point.

It is clear that the smallest of these values is $\boxed{0}$, which is the absolute minimum of f on $[1, e^4]$. To find the largest value, observe that $\frac{4}{e^2} = \left(\frac{2}{e}\right)^2$. Since $\frac{2}{e} < 1$, $\left(\frac{2}{e}\right)^2 < \frac{2}{e}$. Therefore, the absolute maximum of f(x) on $[1, e^4]$ is $\left|\frac{2}{e}\right|$

(f) [Advanced] $f(x) = 2 \arctan(3x) - 3x$ on $\left[0, \frac{1}{\sqrt{3}}\right]$. (Hint: use the approximations $\pi \simeq 3.1$ and $\sqrt{3} \simeq 1.7).)$

Solution. First, we find the critical points of f in $\left[0, \frac{1}{\sqrt{3}}\right]$. We have $f'(x) = \frac{6}{1+9x^2} - 3 = \frac{3-27x^2}{1+9x^2}$.

- f'(x) = 0 gives 3 27x² = 0, so x = ¹/₃, -¹/₃.
 f'(x) undefined gives 1 + 9x² = 0, which has no solution.

So the critical point in $\left[0, \frac{1}{\sqrt{3}}\right]$ is $x = \frac{1}{3}$. Now, we evaluate f(x) at the endpoints and the critical point.

It is clear that the smallest of these values is $\boxed{0}$, which is the absolute minimum of f on $\begin{bmatrix} 0, \frac{1}{\sqrt{3}} \end{bmatrix}$. To find the largest value, observe that $\frac{\pi}{2} - 1 \simeq 0.5$ using the approximation $\pi \simeq 3.1$, and $\frac{2\pi}{3} - \sqrt{3} \simeq 2 - 1.7 = 0.3$. So the absolute maximum of f on $\begin{bmatrix} 0, \frac{1}{\sqrt{3}} \end{bmatrix}$ is $\boxed{\frac{\pi}{2} - 1}$.