Section 4.1: Extreme Values - Worksheet Solutions

1. Find the absolute extrema of the following functions on the given interval.
(a) $f(x)=2 x^{3}+3 x^{2}-12 x+1$ on $[-1,2]$.

Solution. First, we find the critical points of f in $[-1,2]$. We have $f^{\prime}(x)=6 x^{2}+6 x-12=$ $6(x+2)(x-1)$.

- $f^{\prime}(x)=0$ gives $x=-2,1$.
- $f^{\prime}(x)$ undefined: no x-values.

So the critical point in $[-1,2]$ is $x=1$. Now, we evaluate $f(x)$ at the endpoints and the critical point.

$$
\begin{array}{r||c|c|c|}
x & -1 & 1 & 2 \\
\hline f(x) & 14 & -6 & 5
\end{array}
$$

Therefore, the absolute maximum of $f(x)$ on $[-1,2]$ is 14 (reached at $x=-1$) and the absolute minimum is -6 (reached at $x=-1$).
(b) $f(x)=x(7-x)^{2 / 5}$ on $[1,6]$.

Solution. First, we find the critical points of f in $[1,6]$. We have

$$
f^{\prime}(x)=(7-x)^{2 / 5}-\frac{2 x}{5(7-x)^{3 / 5}}=\frac{5(7-x)-2 x}{5(7-x)^{3 / 5}}=\frac{35-7 x}{5(7-x)^{3 / 5}}
$$

- $f^{\prime}(x)=0$ gives $35-7 x=0$, so $x=5$.
- $f^{\prime}(x)$ undefined gives $x=7$.

So the critical point in $[1,6]$ is $x=5$. Now, we evaluate $f(x)$ at the endpoints and the critical point.

$$
\begin{array}{r||c|c|c|}
x & 1 & 5 & 6 \\
\hline f(x) & 6^{2 / 5} & 5 \cdot 4^{1 / 5} & 6
\end{array}
$$

We need to determine which of these is the largest and which is the least. First, observe that $6>6^{2 / 5}$ since $\frac{2}{5}<1$. Next, we have $6<5 \cdot 4^{1 / 5}$. To see this, we can compare the 5 th power of these numbers to see that $6^{5}=7776<5^{5} \cdot 4=12500$. Therefore, the absolute maximum of $f(x)$ on $[1,6]$ is $5 \cdot 4^{1 / 5}$ (reached at $x=5$) and the absolute minimum is $6^{2 / 5}$ (reached at $x=1$).
(c) $f(x)=3 x^{4}-10 x^{3}+6 x^{2}-7$ on $[-2,1]$.

Solution. First, we find the critical points of f in $[-2,1]$. We have $f^{\prime}(x)=12 x^{3}-30 x+12 x=$ $6 x(2 x-1)(x-2)$.

- $f^{\prime}(x)=0$ gives $x=0, \frac{1}{2}, 2$.
- $f^{\prime}(x)$ undefined: no x-values.

So the critical points in $[-2,1]$ are $x=0, \frac{1}{2}$. Now, we evaluate $f(x)$ at the endpoints and the critical point.

x	-2	0	$\frac{1}{2}$	1
$f(x)$	145	-7	$-\frac{105}{16}$	-8

Therefore, the absolute maximum of $f(x)$ on $[-2,1]$ is 145 (reached at $x=-2$) and the absolute minimum is -8 (reached at $x=1$).
(d) $f(x)=\left(e^{x}-2\right)^{4 / 7}$ on $[0, \ln (3)]$.

Solution. First, we find the critical points of f in $[0, \ln (3)]$. We have $f^{\prime}(x)=\frac{4 e^{x}}{7\left(e^{x}-2\right)^{3 / 7}}$.

- $f^{\prime}(x)=0$ gives $4 e^{x}=0$, which has no solution.
- $f^{\prime}(x)$ undefined gives $e^{x}-2=0$, so $x=\ln (2)$.

So the critical point in $[0, \ln (3)]$ is $x=\ln (2)$. Now, we evaluate $f(x)$ at the endpoints and the critical point.

x	0	$\ln (2)$	$\ln (3)$
$f(x)$	1	0	1

Therefore, the absolute maximum of $f(x)$ on $[0, \ln (3)]$ is 1 (reached at $x=0$ and $x=\ln (3))$ and the absolute minimum is 0 (reached at $x=\ln (2)$).
(e) $f(x)=\frac{\ln (x)}{\sqrt{x}}$ on $\left[1, e^{4}\right]$.

Solution. First, we find the critical points of f in $\left[1, e^{4}\right]$. We have $f^{\prime}(x)=\frac{1}{x^{3 / 2}}-\frac{\ln (x)}{2 x^{3 / 2}}=\frac{2-\ln (x)}{2 x^{3 / 2}}$.

- $f^{\prime}(x)=0$ gives $2-\ln (x)=0$, so $x=e^{2}$.
- $f^{\prime}(x)$ undefined gives no solution in the domain of f, which is $(0, \infty)$.

So the critical point in $\left[1, e^{4}\right]$ is $x=e^{2}$. Now, we evaluate $f(x)$ at the endpoints and the critical point.

$$
\begin{array}{r||c|c|c|}
x & 1 & e^{2} & 2^{4} \\
\hline f(x) & 0 & \frac{2}{e} & \frac{4}{e^{2}}
\end{array}
$$

It is clear that the smallest of these values is 0 , which is the absolute minimum of f on $\left[1, e^{4}\right]$. To find the largest value, observe that $\frac{4}{e^{2}}=\left(\frac{2}{e}\right)^{2}$. Since $\frac{2}{e}<1,\left(\frac{2}{e}\right)^{2}<\frac{2}{e}$. Therefore, the absolute maximum of $f(x)$ on $\left[1, e^{4}\right]$ is $\frac{2}{\frac{2}{e}}$.
(f) [Advanced] $f(x)=2 \arctan (3 x)-3 x$ on $\left[0, \frac{1}{\sqrt{3}}\right]$. (Hint: use the approximations $\pi \simeq 3.1$ and $\sqrt{3} \simeq 1.7)$.)

Solution. First, we find the critical points of f in $\left[0, \frac{1}{\sqrt{3}}\right]$. We have $f^{\prime}(x)=\frac{6}{1+9 x^{2}}-3=\frac{3-27 x^{2}}{1+9 x^{2}}$.

- $f^{\prime}(x)=0$ gives $3-27 x^{2}=0$, so $x=\frac{1}{3},-\frac{1}{3}$.
- $f^{\prime}(x)$ undefined gives $1+9 x^{2}=0$, which has no solution.

So the critical point in $\left[0, \frac{1}{\sqrt{3}}\right]$ is $x=\frac{1}{3}$. Now, we evaluate $f(x)$ at the endpoints and the critical point.

$$
\begin{array}{r||c|c|c|}
x & 0 & \frac{1}{3} & \frac{1}{\sqrt{3}} \\
\hline f(x) & 0 & \frac{\pi}{2}-1 & \frac{2 \pi}{3}-\sqrt{3}
\end{array}
$$

It is clear that the smallest of these values is 0 , which is the absolute minimum of f on $\left[0, \frac{1}{\sqrt{3}}\right]$. To find the largest value, observe that $\frac{\pi}{2}-1 \simeq 0.5$ using the approximation $\pi \simeq 3.1$, and $\frac{2 \pi}{3}-\sqrt{3} \simeq$ $2-1.7=0.3$. So the absolute maximum of f on $\left[0, \frac{1}{\sqrt{3}}\right]$ is $\frac{\pi}{2}-1$.

