Sec	tions	4	2-	3

First Derivative Test

Learning Goals

	Learn	earning Goal									Homework Problems						
_	4.2.1	4.2.1 Find the values that satisfy the conclusion of the Mean Value								ıe	1-8.						
	Theor	Theorem.															
_	4.2.2	Identi	ify fur	nctions	s that s	atisfy	the hy	ypothe	ses of	the M	lean V	alue	9-16.				
	Theorem.																
4.2.3 Use Rolle's theorem to investigate the number of zeroes of a									a	17-28.							
function on given intervals.																	
4.2.4 Find functions and values of functions given the derivatives.																	
4.2.5 Find the position of an object given its velocity or acceleration							43-5	43-50.									
with appropriate initial value(s).											-						
4.2.6 Solve applications involving the Mean Value Theorem.								51-5	51-56.								
4.2.7 Answer conceptual questions involving the Mean Value								57-78.				-					
Theorem.																	
	Learning Goal									Homework Problems							
4.3.1 Find intervals where the function is increasing or decreasing,								1-46, 67-68.									
and extrema given the function, its derivative, or the graph of either.																	
4.3.2 Find local and absolute extrema in given domains.								47-5	47-58, 69-70.								
4.3.3 Discuss extreme-value behavior of functions by analyzing their							59-66, 75-85.										
first derivatives.																	
	4.3.4	3.4 Create a function that has given extreme values.							71-74.								
4.3.5 Show that given functions have inverses over their domains.								86-90.									
																	_

and
$$f'(c) = \frac{d}{dx}(\sqrt{x+1})_{|x=c} = \frac{1}{2\sqrt{c+1}}_{|x=c} = \frac{1}{2\sqrt{c+1}}$$
.
So we want to solve $\frac{1}{2\sqrt{c+1}} = \frac{1}{5} \Rightarrow \sqrt{c+1} = \frac{5}{2}$
 $c+1 = 2\frac{5}{2}$
 $c+1 = 2\frac{$

3) Suppose that f is continuous on [1,5], differentiable on (1,5). Assume that f(1) = -2 and $f'(x) \leq 3$. What is the largest possible value of f(5)? MVT : f(5) - f(1) = f'(c) for some c in (1,5) 5 – 1 $= \frac{f(5) - f(1)}{5 - 1} < 3.$ $\Rightarrow f(5) - f(1) \leq 3(5 - 1) = 12$ $f(5) \in |2+f(1)| = |0|$ The largest possible value of f(5) is 10. Concrete interpretation: if you leave at 1 pm and walk at 3 mi/h at most, you'll have traveled at most 12 mi by 5pm. Applications of MVT: ▲ If f'(x) = 0 on I, then f is constant on I. Indeed, $f(x_1) - f(x_1) = f'(c)(x_2 - x_1) = 0$ so $f(x_1) = f(x_1)$. So f(x) = C for a constant C. If f'(x) = q'(x) on T, then (f-g)'(x) = 0 so f-g is constant, i.e. f(x) = g(x) + C.

Examples: 1)
Tf f'(x) =
$$\lambda x$$
, then $f(x) = x^2 + C$ because $\frac{\delta}{\delta x} x^2 = 2x$.
 $g'(x) = \frac{1}{1+x^2}$, then $g(x) = \tan^{-1}(x) + C$ because $\frac{\delta}{\delta x} x^2 = 2x$.
 $g'(x) = \frac{1}{1+x^2}$, then $g(x) = \tan^{-1}(x) + C$
 $h'(x) = x + \cos(x)$, then $h(x) = \frac{1}{2}x^2 + \sin(x) + C$
2) If an object moveo with acceleration $a(t) = -2$,
initial position $c(0) = 4$ and initial velocity $v(0) = -3$,
find the position $c(t)$.
 $v'(t) = a'(t) = -2 \Rightarrow v(t) = -2t + C$ to find C, use
 $-3 = -2t + C$ $v(0) = -3$
So $v(t) = -2t - 3 \Rightarrow s(t) = -t^2 - 3t + C$
 $4 = -0^2 - 3t + C \Rightarrow C = 0$
So $\frac{s(t) = -t^2 - 3t + 4}{2}$.
 (a) If f'(x) > 0 on I, then f is increasing on I
Indeed, if $x_2 > x_1$, $f(x_1) = f(x_1) = (x_2 - x_1)f'(c) > 0$.
Likewise , if $f'(x) < 0$ on I, then f is decreasing on I.
Indeed, if $x_2 > x_3$, $f(x_2) - f(x_1) = (x_2 - x_1)f'(c) < 0$.

First Derivative Test: assume c is a critical point
of f.
• If f' changes from + to -
$$f'_{2}$$
, f'_{2}
at c, then f has a local
max. at x: c.
• If f' changes from - to t f'_{2} , y_{2} , f'_{2}
• If f' changes from - to t f'_{2} , y_{2} , f'_{2} , y_{2} , f'_{2} , y_{2} , f'_{2} , y_{3} , f'_{2} , y_{4} , f'_{2} , f'_{2} , y_{4} , f'_{2} , f''_{2} , f''_{2} , f''_{2} , f'

