Sections 4.2-3: Mean Value Theorem and First Derivative Test - Worksheet

1. Find the values of the constants A, B for which the following function satisfies the assumptions of the Mean Value Theorem on the interval $[-2,2]$.

$$
f(x)= \begin{cases}e^{5 x+B} & \text { if } x \geqslant 0 \\ \arctan (A x+1) & \text { if } x<0\end{cases}
$$

2. Suppose that f is continuous on $[-2,4]$, that $f(4)=1$ and that $f^{\prime}(x) \geqslant 3$ for x in $(-2,4)$. Find the largest possible value of $f(-2)$.
3. Find and classify the critical points of the following functions.
(a) $f(x)=x^{4 / 7}\left(72-x^{2}\right)$
(c) $f(x)=x+\cos (2 x)$ on $\left[0, \frac{\pi}{2}\right]$
(b) $f(x)=x^{5} \ln (x)$
(d) $f(x)=\sin ^{-1}\left(e^{-x^{2}}\right)$
4. Suppose that f is continuous on $(-\infty, \infty)$ and that $f^{\prime}(x)=\frac{(x+3)(x-5)^{2}}{x^{2 / 3}(x-1)^{1 / 5}}$.
(a) Find the critical points of f.
(b) Find the intervals where f is increasing and the intervals where f is decreasing.
(c) Find the location of the local extrema of f.
5. Suppose that f is a differentiable function. The graph of the derivative of $f, y=f^{\prime}(x)$, is sketched below.

(a) Find the critical points of f.
(b) Find the intervals where f is increasing and the intervals where f is decreasing.
(c) Find the location of the local extrema of f.
