## Sections 4.2-3: Mean Value Theorem and First Derivative Test - Worksheet Solutions

1. Find the values of the constants $A, B$ for which the following function satisfies the assumptions of the Mean Value Theorem on the interval $[-2,2]$.

$$
f(x)= \begin{cases}e^{5 x+B} & \text { if } x \geqslant 0 \\ \arctan (A x+1) & \text { if } x<0\end{cases}
$$

Solution. To satisfy the assumptions of the MVT, $f$ must be continuous on $[-2,2]$ and differentiable on $(-2,2)$. Each piece of $f$ is differentiable (therefore also continuous) so we only need to check for continuity and differentiability at $x=0$. For continuity, we will want

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=f(0)
$$

This gives $e^{B}=\arctan (1)=\frac{\pi}{4}$, so $B=\ln \left(\frac{\pi}{4}\right)$.
For differentiability at $x=0$, we start by computing the derivative of each piece of $f$ :

$$
f^{\prime}(x)= \begin{cases}5 e^{5 x+B} & \text { if } x>0 \\ \frac{A}{1+(A x+1)^{2}} & \text { if } x<0\end{cases}
$$

For $f$ to be differentiable at 0 , we need $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\lim _{x \rightarrow 0^{-}} f^{\prime}(x)$, which gives $5 e^{B}=\frac{A}{2}$. Therefore, $A=10 e^{B}=10 \frac{\pi}{4}=\frac{5 \pi}{2}$.
2. Suppose that $f$ is continuous on $[-2,4]$, that $f(4)=1$ and that $f^{\prime}(x) \geqslant 3$ for $x$ in $(-2,4)$. Find the largest possible value of $f(-2)$.

Solution. We use the MVT: there exists a point $c$ in $(-2,4)$ such that

$$
\frac{f(4)-f(-2)}{4-(-2)}=f^{\prime}(c)
$$

This gives $\frac{1-f(-2)}{6}=f^{\prime}(c)$, which is $f(-2)=1-6 f^{\prime}(c)$. By assumption, we have $f^{\prime}(c) \geqslant 3$, so $6 f^{\prime}(c) \geqslant 18$ and $f^{\prime}(2)=1-6 f^{\prime}(c) \leqslant-17$. So the largest possible value of $f^{\prime}(2)$ is -17 .
3. Find and classify the critical points of the following functions.
(a) $f(x)=x^{4 / 7}\left(72-x^{2}\right)$

Solution. We have

$$
f^{\prime}(x)=\frac{4\left(72-x^{2}\right)}{7 x^{3 / 7}}-2 x^{11 / 7}=\frac{4\left(72-x^{2}\right)-14 x^{2}}{7 x^{3 / 7}}=\frac{288-18 x^{2}}{7 x^{3 / 7}}=\frac{18(4-x)(4+x)}{7 x^{3 / 7}}
$$

The critical points of $f$ are $x=4,-4$ (where $f^{\prime}$ is 0 ) and $x=0$ (where $f^{\prime}$ is undefined). We now test the sign of $f^{\prime}$ between each critical point.

- On $(-\infty,-4), f^{\prime}$ is $\frac{(+)(-)}{(-)}=(+)$.
- On $(-4,0), f^{\prime}$ is $\frac{(+)(+)}{(-)}=(-)$.
- On $(0,4), f^{\prime}$ is $\frac{(+)(+)}{(+)}=(+)$.
- On $(-\infty,-4), f^{\prime}$ is $\frac{(-)(+)}{(+)}=(-)$.

So $f$ has local maxima at $x=-4,4\left(f^{\prime}\right.$ changes from + to -$)$ and a local minimum at $x=0\left(f^{\prime}\right.$ changes from - to + ).
(b) $f(x)=x^{5} \ln (x)$

Solution. Note that the domain of $f$ is $(0, \infty)$. We have

$$
f^{\prime}(x)=5 x^{4} \ln (x)+x^{5} \cdot \frac{1}{x}=5 x^{4} \ln (x)+x^{4}=x^{4}(5 \ln (x)+1)
$$

The critical point of $f$ is $x=e^{-1 / 5}$ (where $f^{\prime}$ is 0 ). We now test the sign of $f^{\prime}$ on either side of the critical point.

- On $\left(0, e^{-1 / 5}\right), f^{\prime}$ is negative.
- On $\left(e^{-1 / 5}, \infty\right), f^{\prime}$ is positive.

So $f$ has a local minimum at $x=e^{-1 / 5}$ ( $f^{\prime}$ changes from - to + ).
(c) $f(x)=x+\cos (2 x)$ on $\left[0, \frac{\pi}{2}\right]$

Solution. We have

$$
f^{\prime}(x)=1-2 \sin (2 x)
$$

Solving $f^{\prime}(x)=0$ gives $\sin (2 x)=\frac{1}{2}$, which gives the solutions $x=\frac{\pi}{12}, \frac{5 \pi}{12}$ on the interval $\left[0, \frac{\pi}{2}\right]$. We now test the sign of $f^{\prime}$ between each critical point.

- On $\left(0, \frac{\pi}{12}\right), f^{\prime}$ is positive since $\sin (2 x)<\frac{1}{2}$.
- On $\left(\frac{\pi}{12}, \frac{5 \pi}{12}\right), f^{\prime}$ is negative $\operatorname{sincesin}(x)>\frac{1}{2}$.
- On $\left(\frac{5 \pi}{12}, \frac{\pi}{2}\right), f^{\prime}$ is positive since $\sin (2 x)<\frac{1}{2}$.

So $f$ has a local maximum at $x=\frac{\pi}{12}\left(f^{\prime}\right.$ changes from + to -$)$ and a local minimum at $x=\frac{5 \pi}{12}\left(f^{\prime}\right.$ changes from - to + ).
(d) $f(x)=\sin ^{-1}\left(e^{-x^{2}}\right)$

Solution. We have

$$
f^{\prime}(x)=\frac{1}{\sqrt{1-\left(e^{-x^{2}}\right)^{2}}} e^{-x^{2}}(-2 x)=\frac{-2 x e^{-x^{2}}}{\sqrt{1-e^{-2 x^{2}}}}
$$

The critical point of $f$ is $x=0$ (where $f^{\prime}$ is undefined). We now test the sign of $f^{\prime}$ on either side of the critical point.

- On $(-\infty, 0), f^{\prime}$ is $\frac{(+)(+)}{(+)}=(+)$.
- On $(0, \infty), f^{\prime}$ is $\frac{(-)(+)}{(+)}=(-)$.

So $f$ has a local maximum at $x=0\left(f^{\prime}\right.$ changes from + to -$)$.
4. Suppose that $f$ is continuous on $(-\infty, \infty)$ and that $f^{\prime}(x)=\frac{(x+3)(x-5)^{2}}{x^{2 / 3}(x-1)^{1 / 5}}$.
(a) Find the critical points of $f$.

Solution. We have $f^{\prime}(x)=0$ when $x=-3,5$. We have $f^{\prime}(x)$ undefined when $x=0,-$. Therefore, the critical points of $f$ are $x=-3,0,1,5$.
(b) Find the intervals where $f$ is increasing and the intervals where $f$ is decreasing.

Solution. We test for the sign of $f^{\prime}$ between the critical points.

- On $(-\infty,-3): \frac{(-)(+)}{(+)(-)}=(+)$
- On $(-3,0): \frac{(+)(+)}{(+)(-)}=(-)$
- On $(0,1): \frac{(+)(+)}{(+)(-)}=(-)$
- On $(1,5): \frac{(+)(+)}{(+)(+)}=(+)$
- On $(5, \infty): \frac{(+)(+)}{(+)(+)}=(+)$

So $f$ is increasing on $(-\infty,-3]$ and $[1, \infty)$, and decreasing on $[-3,1]$.
(c) Find the location of the local extrema of $f$.

Solution. Based on our previous analysis, we can conclude that $f$ has a local maximum at $x=-3$ and a local minimum at $x=1$.
5. Suppose that $f$ is a differentiable function. The graph of the derivative of $f, y=f^{\prime}(x)$, is sketched below.

(a) Find the critical points of $f$.

Solution. Using the graph, we see that $f^{\prime}(x)=0$ when $x=-7,-1,3$ and $f^{\prime}(x)$ is undefined when $x=-4$. Therefore, the critical points of $f$ are $x=-7,-4,-1,3$.
(b) Find the intervals where $f$ is increasing and the intervals where $f$ is decreasing.

Solution. Using the graph, we see that $f^{\prime}(x)>0$ on $(-7,-4),(-4,-1)$ and $(3, \infty)$. So $f$ is increasing on $[-7,-1]$ and $[3, \infty)$. Likewise, $f^{\prime}(x)<0$ on $(-\infty,-7)$ and $(-1,3)$. So $f$ is decreasing on $(-\infty,-7]$ and $[-1,3]$.
(c) Find the location of the local extrema of $f$.

Solution. $f$ has a local maximum at $x=-1\left(f^{\prime}\right.$ changes from + to -$)$ and local minima at $x=-7,3$ ( $f^{\prime}$ changes from - to + ).

