Learning Goals

 Lear	ning (Goal										Hom	newor	k Proł	olems			
 4.4.1 incre	4.4.1 Identify inflection points, local extrema, intervals of increasing/decreasing, and concavity from graphs.											1-8,						
4.4.2 Graph functions and find any extrema and inflection points.												9-58						
4.4.3 Graph $f(x)$ given information about the first and second derivatives such as functions graphs or sign behavior													59-102, 104-108.					
4.4.4	4.4.4 Solve applications involving graphs of functions and their derivatives													113-116.				
4.4.5	4.4.5 Answer conceptual questions involving curve sketching using information about the function or its derivatives.												117-128.					
]		

Second Derivative Test: we can use the second derivative
to classify critical points c where
$$f'(c) = 0$$
.
• If $f''(c) > 0$, f has a
local min. at $x = c$.
• If $f''(c) < 0$, f has a
local max. at $x = c$.
• If $f''(c) = 0$: SDT inconclusive, use FDT.
A f''(c) = 0 does not mean there is no local extremum
at $x = c$.
Examples: 1) For $f(x) = 3x^5 - 5x^4 + 10x - 3$, find the intervals
where f is concave up, concave down and the inflection
points of f.
 $f'(x) = 3x^5 - 5x^4 + 10x - 3$
 $f''(x) = 15x^4 - 20x^3 + 10$
 $f''(x) = 66x^3 - 66x^2 + 66x^3(x-1)$.
Stape of $f''(x) = (1,5)$ is a point of inflection

2) Find and classify the critical points of
$$f(x) = xe^{2x}$$

and $g(x) = \sin(x) + \cos(x)$ on $[o, \frac{\pi}{2}]$.
For $f: f'(x) = e^{2x} + xe^{2x} = e^{2x} (2x+1) \Rightarrow x = -\frac{1}{2}$ critical point.
SDT: $f''(x) = e^{2x} + xe^{2x} = e^{2x} (2x+1) \Rightarrow x = -\frac{1}{2}$ critical point.
SDT: $f''(x) = e^{2x} + xe^{2x} = e^{2x} (2x+1) \Rightarrow x = -\frac{1}{2}$ critical point.
SDT: $f''(x) = e^{2x} + xe^{2x} = e^{2x} (2x+1) \Rightarrow x = -\frac{1}{2}$ critical point.
So f has a local min. at $x = -\frac{1}{2}$.
For $g: g'(x) = \cos(x) - \sin(x)$
 $g'(x) = 0$ when $\cos(x) = \sin(x)$; this happens when $x = \frac{\pi}{4}$ in $[0, \frac{\pi}{2}]$.
SDT: $f''(x) = -\sin(x) - \cos(x)$
 $f''(\frac{\pi}{4}) = -\sin(\frac{\pi}{4}) - \cos(\frac{\pi}{4}) = -\frac{12}{2} - \frac{12}{2} = -12 < 0$.
So f has a local max. at $x = \frac{\pi}{4}$
3) Sketch the graph of $f(x) = -x^3 + 2x^4 + 1$.
End behavior: $\lim_{x \to \infty} f(x) = -\infty$, $\lim_{x \to +\infty} f(x) = \infty$.
Vertical asymptotes : none.
Tafo from $f': f'(x) = -3x^2 + 6x = -3x(x-2)$.
increasing on $[o, 2]$
decreasing on $[-\infty, -]$.
So $gn of f'' = 0 + 0$ - beal min. at $x = 2$.

