Learning Goals

Learning Goal	Homework Problems
4.4.1 Identify inflection points, local extrema, intervals of increasing/decreasing, and concavity from graphs.	$1-8,103,109-116$.
4.4.2 Graph functions and find any extrema and inflection points.	$9-58,129-134$.
4.4.3 Graph $f(x)$ given information about the first and second derivatives, such as functions, graphs, or sign behavior.	$59-102,104-108$.
4.4.4 Solve applications involving graphs of functions and their derivatives.	$113-116$.
4.4.5 Answer conceptual questions involving curve sketching using information about the function or its derivatives.	$117-128$.

What does the second derivative tell us?

f is Concave up
f^{\prime} is increasing

$$
f^{\prime \prime}>0
$$

Graph above tangent lines "Bends up"

f is Concave down f^{\prime} is decreasing

$$
f^{\prime \prime}<0
$$

Graph below tangent lines "Bends down

An inflection point is a point $(c, f(c)$) on the graph where:

- f has a tangent line (i.e. $f^{\prime}(c)$ exists)
- the concavity changes (i.e. $f^{\prime \prime}$ changes sign)

Second Derivative Test: we can use the second derivative to classify critical points c where $f^{\prime}(c)=0$.

- If $f^{\prime \prime}(c)>0, f$ has a local min. at $x=c$.
- If $f^{\prime \prime}(c)<0, f$ has a local max. at $x=c$.

- If $f^{\prime \prime}(c)=0$: SDT inconclusive, use FDT.

1 1. $f^{\prime \prime}(c)=0$ does not mean there is no local extremum at $x=c$.

Examples: 1) For $f(x)=3 x^{5}-5 x^{4}+10 x-3$, find the intervals where f is concave up, concave down and the inflection points of f.

$$
\begin{aligned}
& f(x)=3 x^{5}-5 x^{4}+10 x-3 \\
& \rightarrow f^{\prime}(x)=15 x^{4}-20 x^{3}+10 \\
& f^{\prime \prime}(x)=60 x^{3}-60 x^{2}=60 x^{2}(x-1) .
\end{aligned}
$$

shape of f^{\prime}

So f is concave up on $(-\infty, 1]$
concave down on $[1, \infty)$
$(1, f(1))=(1,5)$ is a point of inflection
2) Find and classify the critical points of $f(x)=x e^{2 x}$ and $g(x)=\sin (x)+\cos (x)$ on $\left[0, \frac{\pi}{2}\right]$.

For $f: f^{\prime}(x)=e^{2 x}+x e^{2 x} \cdot 2=e^{2 x}(2 x+1) \Rightarrow x=-\frac{1}{2}$ critical point.
SDI: $\quad f^{\prime \prime}(x)=e^{2 x} \cdot 2(2 x+1)+e^{2 x} \cdot 2$

$$
=2 e^{2 x}(2 x+2)
$$

$$
f^{\prime \prime}\left(-\frac{1}{2}\right)=2 e^{-1}(-1+2)=2 e^{-1}>0 .
$$

So f has a local min. at $x=-\frac{1}{2}$.

For g : $g^{\prime}(x)=\cos (x)-\sin (x)$
$g^{\prime}(x)=0$ when $\cos (x)=\sin (x)$; this happens when $x=\frac{\pi}{4}$ in $\left[0, \frac{\pi}{2}\right]$.

SDI : $\quad f^{\prime \prime}(x)=-\sin (x)-\cos (x)$

$$
f^{\prime \prime}\left(\frac{\pi}{4}\right)=-\sin \left(\frac{\pi}{4}\right)-\cos \left(\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}=-\sqrt{2}<0 .
$$

So f has a local max. at $x=\frac{\pi}{4}$
3) Sketch the graph of $f(x)=-x^{3}+3 x^{2}+1$.

- End behavior: $\lim _{x \rightarrow \infty} f(x)=-\infty, \lim _{x \rightarrow-\infty} f(x)=\infty$.
- Vertical asymptotes: none.
- Info from $f^{\prime}: f^{\prime}(x)=-3 x^{2}+6 x=-3 x(x-2)$. shape of if
 increasing on $[0,2]$ decreasing on $(-\infty, 0]$, $[2, \infty)$ local min. at $x=0$ local max. at $x=2$.
- Info from $f^{\prime \prime}: f^{\prime \prime}(x)=-6 x+6=-6(x-1)$. shape of if
 concave up on ($-\infty, 1]$ concave down on $[1, \infty)$ inflection point at $x=1$.
- Recap:

x	$-\infty$	0	1	2	∞	
$f(x)$	∞	1	3	5	$-\infty$	
inc.						
conc.						

4) Sketch the graph of $f(x)=\frac{x-3}{x(x-6)}$ using:

$$
f^{\prime}(x)=-\frac{(x-3)^{2}+9}{x^{2}(x-6)^{2}} \quad f^{\prime \prime}(x)=\frac{2(x-3)\left((x-3)^{2}+27\right)}{x^{3}(x-6)^{3}}
$$

- End behavior: $\lim _{x \rightarrow \infty} \frac{x-3}{x(x-6)} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{1-\frac{3}{x}}{x-6}=" \frac{1}{\infty} "=0=\lim _{x \rightarrow-\infty} \frac{x-3}{x(x-6)}$.

So $y=0$ is a horizontal asymptote of f.

- Vertical asymptotes: $x=0$ (gives $\frac{-3}{0}$)

$$
x=6 \quad \text { (gives } \frac{3}{0} \text {) }
$$

- Recap

x	$-\infty$	0	3	6	∞	
$f(x)$	0	VA	0	VA	0	
inc.						
conc.						

$$
y=0
$$

5) Suppose f is continuous on $(-\infty, \infty)$. Below is the graph of the derivative of $f_{1} y=f^{\prime}(x)$.

Find the following: critical points of f, intervals of increase and decrease of f, location of local extrema, intervals where f is concave up / down, location of inflection points.

- Critical points of $f: x=2,4,7,9 \quad\left(f^{\prime}=0\right)$

$$
x=3 \quad\left(f^{\prime} \text { DUE }\right)
$$

- f increasing: $(-\infty, 2],[4,9] \quad\left(f^{\prime}>0\right)$
- f decreasing: $[2,4],[9, \infty) \quad\left(f^{\prime}<0\right)$
- Local max. at $x=2,9 \quad\left(f^{\prime}+t_{0}-\right)$
- Local min. at $x=4 \quad\left(f^{\prime}-t_{0}+\right)$
- f concave up on $(-\infty, 1],[3,5],[7,8]$ ($f^{\prime} \lambda$)
- f concave down on $[1,3],[5,7],[8, \infty)$ ($f^{\prime}>$)

Practice: sketch the graph of the following functions.

1) $f(x)=x^{4}+4 x^{3}-1$
2) $f(x)=\cos (2 x)-x$ on $[0, \pi]$.
3) $f(x)=x^{4}+4 x^{3}-1$

- End behavior: $\lim _{x \rightarrow \infty} f(x)=\infty=\lim _{x \rightarrow-\infty} f(x)$.
- No vas.
- Info from $f^{\prime}: f^{\prime}(x)=4 x^{3}+12 x^{2}=4 x^{2}(x+3)$
 local $\min _{x=-3}$ at sign of f^{\prime} $x=-3$
- Info from $f^{\prime \prime}: f^{\prime \prime}(x)=12 x^{2}+24 x=12 x(x+2)$
 inflection at $x=-2,0$.
- Recap

x	$-\infty$	-3	-2	0	∞	
$f(x)$	∞	-28	-17	-1	∞	
inc.						
conc.						

2) $f(x)=\cos (2 x)-x$ on $[0, \pi]$.

- Info from $f^{\prime}: f^{\prime}(x)=-2 \sin (2 x)-1$

local min at

$$
x=\frac{7 \pi}{12}
$$

local max at

$$
x=\frac{n \pi}{12} .
$$

- Info from $f^{\prime \prime}: f^{\prime \prime}(x)=-4 \cos (2 x)$

- Recap

x	0	$\frac{\pi}{4}$	$\frac{7 \pi}{12}$	$\frac{3 \pi}{4}$	$\frac{11 \pi}{12}$	π	
$f(x)$	1		$-\frac{\pi}{4}$	$-\frac{\sqrt{3}}{2}-\frac{7 \pi}{12}$	$-\frac{3 \pi}{4}$	$\frac{\sqrt{3}}{2}-\frac{11 \pi}{12}$	$1-\pi$
inc.							
conc.							

