Sections 4.4: Concavity and Curve Sketching - Worksheet

1. Find the intervals where the functions below are concave up, concave down and find the inflection points.
(a) $f(x)=\frac{1}{x^{2}+12}$
(b) $f(x)=x^{4} e^{-3 x}$
2. Sketch the graphs of the following functions. Your graph should clearly show any asymptotes, local extrema and inflection points of the functions.
(a) $f(x)=\frac{8}{x}-x^{2}$
(b) $f(x)=\tan (2 x)-8 x$ on $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$
3. Suppose that f is continuous on $(-\infty, \infty)$, that $f^{\prime}(x)=\frac{x}{(x+4)^{1 / 3}}$ and that $f^{\prime \prime}(x)=\frac{2 x+12}{3(x+4)^{4 / 3}}$.
(a) Find the critical points of f.
(b) Find the intervals where f is increasing and the intervals where f is decreasing.
(c) Find the location of the local extrema of f.
(d) Find the intervals where f is concave up and the intervals where f is concave down.
(e) Find the x-coordinates of the inflection points of f.
4. Suppose that f is a differentiable function. The graph of the derivative of $f, y=f^{\prime}(x)$, is sketched below.

(a) Find the critical points of f.
(b) Find the intervals where f is increasing and the intervals where f is decreasing.
(c) Find the location of the local extrema of f.
(d) Find the intervals where f is concave up and the intervals where f is concave down.
(e) Find the x-coordinates of the inflection points of f.
