Sections 4.4: Concavity and Curve Sketching - Worksheet Solutions

1. Find the intervals where the functions below are concave up, concave down and find the inflection points.
(a) $f(x)=\frac{1}{x^{2}+12}$

Solution. We need to find the second derivative of f. We have

$$
\begin{aligned}
f^{\prime}(x) & =-\frac{1}{\left(x^{2}+12\right)^{2}}(2 x)=-2 x\left(x^{2}+12\right)^{-2} \\
f^{\prime \prime}(x) & =-2\left(x^{2}+12\right)^{-2}-2 x(-2)\left(x^{2}+12\right)^{-3}(2 x) \\
& =-2\left(x^{2}+12\right)^{-3}\left(\left(x^{2}+12-4 x^{2}\right)\right) \\
& =-2 \frac{12-3 x^{2}}{\left(x^{2}+12\right)^{3}} \\
& =-6 \frac{(2-x)(2+x)}{\left(x^{2}+12\right)^{3}}
\end{aligned}
$$

We now use a sign analysis to determine the intervals on which $f^{\prime \prime}(x)$ is positive and negative.

- On $(-\infty,-2)$, the sign of $f^{\prime \prime}(x)$ is $(-) \frac{(+)(-)}{(+)}=(+)$.
- On $(-2,2)$, the sign of $f^{\prime \prime}(x)$ is $(-) \frac{(+)(+)}{(+)}=(-)$.
- On $(2, \infty)$, the sign of $f^{\prime \prime}(x)$ is $(-) \frac{(-)(+)}{(+)}=(+)$.

Therefore f is concave up on $(-\infty,-2),(2, \infty)$ and concave down on $(-2,2)$. The inflection points of f are $\left(-2, \frac{1}{16}\right),\left(2, \frac{1}{16}\right)$.
(b) $f(x)=x^{4} e^{-3 x}$

Solution. We need to find the second derivative of f. We have

$$
\begin{aligned}
f^{\prime}(x) & =4 x^{3} e^{-3 x}-3 x^{4} e^{-3 x}=e^{-3 x}\left(4 x^{3}-3 x^{4}\right), \\
f^{\prime \prime}(x) & =e^{-3 x}\left(12 x^{2}-12 x^{3}\right)-3 e^{-3 x}\left(4 x^{3}-3 x^{4}\right) \\
& =e^{-3 x}\left(12 x^{2}-12 x^{3}-12 x^{3}+9 x^{4}\right) \\
& =e^{-3 x}\left(12 x^{2}-24 x^{3}+9 x^{4}\right) \\
& =3 x^{2} e^{-3 x}\left(4-8 x+3 x^{2}\right) \\
& =3 x^{2} e^{-3 x}(3 x-2)(x-2) .
\end{aligned}
$$

We now use a sign analysis to determine the intervals on which $f^{\prime \prime}(x)$ is positive and negative.

- On $(-\infty, 0)$, the sign of $f^{\prime \prime}(x)$ is $(+)$.
- On $\left(0, \frac{2}{3}\right)$, the sign of $f^{\prime \prime}(x)$ is $(+)$.
- On $\left(\frac{2}{3}, 2\right)$, the sign of $f^{\prime \prime}(x)$ is $(-)$.
- On $(2, \infty)$, the sign of $f^{\prime \prime}(x)$ is $(+)$.

Therefore f is concave up on $(-\infty, 0),\left(0, \frac{2}{3}\right),(2, \infty)$ and concave down on $\left(\frac{2}{3}, 2\right)$. The inflection points of f are $\left(\frac{2}{3}, \frac{16 e^{-2}}{81}\right),\left(2,16 e^{-6}\right)$.
2. Sketch the graphs of the following functions. Your graph should clearly show any asymptotes, local extrema and inflection points of the functions.
(a) $f(x)=\frac{8}{x}-x^{2}$

Solution.

- Horizontal asymptotes: none since $\lim _{x \rightarrow \infty} f(x)=-\infty=\lim _{x \rightarrow-\infty} f(x)$.
- Vertical asymptotes: $x=0$.
- Info from first derivative: $f^{\prime}(x)=-\frac{8}{x^{2}}-2 x=-2 \frac{4+x^{3}}{x^{2}}$. The critical point of f is $x=-4^{1 / 3}$, and $f^{\prime}(x)$ is positive on $\left(-\infty,-4^{1 / 3}\right)$ and negative on $\left(-4^{1 / 3}, 0\right),(0, \infty)$. So f is increasing on $\left(-\infty,-4^{1 / 3}\right)$ and decreasing on $\left(-4^{1 / 3}, 0\right),(0, \infty)$. Therefore, f has a local maximum at $x=-4^{1 / 3}$.
- Info from second derivative: $f^{\prime \prime}(x)=\frac{16}{x^{3}}-2=2 \frac{8-x^{3}}{x^{3}}$. The sign of $f^{\prime \prime}(x)$ is positive on $(0,2)$ and negative on $(-\infty, 0),(2, \infty)$. Therefore, f is concave up on $(0,2)$ and concave down on $(-\infty, 0)$, $(2, \infty)$, and f has an inflection point at $x=2$.

(b) $f(x)=\tan (2 x)-8 x$ on $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$

Solution.

- Horizontal asymptotes: none since we are graphing on a bounded interval.
- Vertical asymptotes: $x=\frac{\pi}{4}, x=-\frac{\pi}{4}\left(\right.$ since $\tan (x)$ has infinite discontinuities at $\left.x= \pm \frac{\pi}{2}\right)$.
- Info from first derivative: $f^{\prime}(x)=2 \sec ^{2}(2 x)-8=2(\sec (2 x)-2)(\sec (2 x)+2)$. To find the critical points of f, we need to solve $f^{\prime}(x)=0$, which gives $\sec (2 x)=-2$ (no solution in the interval) and $\sec (2 x)=2$ (solutions in the interval are $\left.x= \pm \frac{\pi}{6}\right)$. The sign of $f^{\prime}(x)$ is positive (so f is increasing) on $\left(-\frac{\pi}{4},-\frac{\pi}{6}\right)$ and $\left(\frac{\pi}{6}, \frac{\pi}{4}\right)$, and negative (so f is decreasing) on $\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)$. So f has a local maximum at $x=-\frac{\pi}{6}$ and a local minimum at $x=-\frac{\pi}{6}$.
- Info from second derivative: $f^{\prime \prime}(x)=4 \sec (2 x) \sec (2 x) \tan (2 x)(2)=8 \sec ^{2}(2 x) \tan (2 x)$. We see that $f^{\prime \prime}(x)>0$ (so f is concave up) on $\left(-\frac{\pi}{4}, 0\right)$ and $f^{\prime \prime}(x)<0$ (so f is concave down) on ($0, \frac{\pi}{4}$). Therefore, f has an inflection point at $x=0$.

3. Suppose that f is continuous on $(-\infty, \infty)$, that $f^{\prime}(x)=\frac{x}{(x+4)^{1 / 3}}$ and that $f^{\prime \prime}(x)=\frac{2 x+12}{3(x+4)^{4 / 3}}$.
(a) Find the critical points of f.

Solution.

- $f^{\prime}(x)=0$ when $x=0$.
- $f^{\prime}(x)$ is undefined when $x=-4$.

Therefore, the critical points of f are $x=-4,0$.
(b) Find the intervals where f is increasing and the intervals where f is decreasing.

Solution. $f^{\prime}(x)>0$ on $(-\infty,-4),(0, \infty)$, and $f^{\prime}(x)<0$ on $(-4,0)$. Therefore, f is increasing on $(-\infty,-4],[0, \infty)$ and decreasing on $[-4,0]$.
(c) Find the location of the local extrema of f.

Solution. Based on our previous answer, f has a local maximum at $x=-4$ and a local minimum at $x=0$.
(d) Find the intervals where f is concave up and the intervals where f is concave down.

Solution. $f^{\prime \prime}(x)>0$ on $(-6, \infty)$ and $f^{\prime \prime}(x)<0$ on $(-\infty,-6)$. So f is concave up on $[-6, \infty)$ and concave down on $(-\infty,-6]$.
(e) Find the x-coordinates of the inflection points of f.

Solution. The only place where f changes concavity is $x=-6$.
4. Suppose that f is a differentiable function. The graph of the derivative of $f, y=f^{\prime}(x)$, is sketched below.

(a) Find the critical points of f.

Solution.

- $f^{\prime}(x)=0$ when $x=-1,2,5$.
- $f^{\prime}(x)$ is undefined when $x=-2$.

Therefore, the critical points of f are $x=-2,-1,2,5$.
(b) Find the intervals where f is increasing and the intervals where f is decreasing.

Solution. $f^{\prime}(x)>0$ is positive on $(-2,-1)$ and $(2,5)$, so f is increasing on $[-2,-1],[2,5] . f^{\prime}(x)<0$ on $(-\infty,-2),(-1,2)$ and $(5, \infty)$, so f is decreasing on $(-\infty,-2],[-1,2],[5, \infty)$.
(c) Find the location of the local extrema of f.

Solution. f has local maxima at $x=-1,5$ (f^{\prime} changes from positive to negative) and local minima at $x=-2,2$ (f^{\prime} changes from negative to positive).
(d) Find the intervals where f is concave up and the intervals where f is concave down.

Solution. f is concave up when f^{\prime} is increasing, which happens on $(-\infty,-3],[0,4] . f$ is concave down when f^{\prime} is decreasing, which happens on $[-3,-2],[-2,0],[4, \infty)$.
(e) Find the x-coordinates of the inflection points of f.

Solution. f has inflection points at $x=-3,0,4$.

