Optimization

Learning Goals

Learning Goal	Homework Problems
4.6.1 Given a word problem about optimization, determine	$1-49 \mathrm{a}, 50 \mathrm{a}, 51-56$,
appropriate variables, a function to optimize, and the interval on	$64,66 \mathrm{a}, 67-71 \mathrm{a}$,
which it should be optimized. Use these to solve the word problem.	$72 \mathrm{a}, 73,74$.
4.6.2 Decide whether a function has a max or min on an open,	$8-11,14,15,23,28-$
unbounded interval. If so, find it. Justify your conclusions.	$30,35,36,38-41$,
	$43,45,52,53,73$,
	74.

Goal: solve applied problems involving finding min. and max. of functions.

Terminology:

- Objective function: the quantity that we want to optimize. Needs to be expressed as a function of one single variable.
- Feasible intervals: the interval of possible values for the variable, taking physical limitations into account.

Examples: 1) A farmer has 240 ft of fencing to construct 3 adjacent rectangular pens. What dimensions will result in the largest total area?

Step 1: draw picture and name variables.

Step 2: find objective and constraints.
h What do we need to maximize?

$$
\rightarrow \text { Area } A=3 w h
$$

What are the constraints? $\rightarrow 240 \mathrm{ft}$ of fencing

$$
6 w+4 h=240
$$

Step 3: use constraint to express objective in terms of one variable only.

$$
6 w+4 h=240 \Rightarrow 4 h=240-6 w=6(40-w) \Rightarrow h=\frac{3}{2}(40-w)
$$

So $A=3 w h=3 w \frac{3}{2}(40-w)$

$$
A(w)=\frac{9}{2} w(40-w) .
$$

Step 4 : find feasible interval.
Lengths cannot be negative, so $w \geqslant 0$

$$
\begin{aligned}
h \geqslant 0 & \Rightarrow \quad 240-6 w \geqslant 0 \\
& \Rightarrow \quad 40 \geqslant w .
\end{aligned}
$$

Step 5: find max. of objective function on interval of interest.

$$
A(w)=\frac{9}{2}\left(40 w-w^{2}\right) \text { on }[0,40] .
$$

Critical points: $\quad A^{\prime}(w)=\frac{9}{2}(40-2 w)=9(20-w)$

$$
A^{\prime}(w)=0 \Rightarrow w=20 .
$$

Evaluate $A(w)$ at critical points and endpoint:

$$
\left.\begin{array}{l}
A(0)=0 \\
A(20)=1800 \\
A(40)=0
\end{array}\right\} \Rightarrow \begin{aligned}
& \text { The largest area occurs for } w=20 \mathrm{ft} \\
& \text { and } h=\frac{3}{2}(40-w)=30 \mathrm{ft}
\end{aligned}
$$

2) Find the dimensions of the rectangle with largest area that can be inscribed in a semi-circle of radius 2.

Step 1: draw picture and name variables.

Step 2: find objective and constraints.
Objective: Area $A=2 x y$
Constraint: $\quad x^{2}+y^{2}=4$

Step 3: use constraint to express objective in terms of one variable only.

$$
x^{2}+y^{2}=4 \Rightarrow \begin{aligned}
y^{2} & =4-x^{2} \\
|y| & =\sqrt{4-x^{2}}, \quad y \geqslant 0 \text { for our purpose. } \\
y & =\sqrt{4-x^{2}}
\end{aligned}
$$

So $A(x)=2 x \sqrt{4-x^{2}}$.

Step 4: find feasible interval: $0 \leq x \leq 2$

Step 5: find max. of objective function on interval of interest.

$$
\begin{aligned}
& A(x)=2 x \sqrt{4-x^{2}} \text { on }[0,2] . \\
& \hookrightarrow A^{\prime}(x)=2\left(\sqrt{4-x^{2}}+x \frac{1}{2 \sqrt{4-x^{2}}}(-2 x)\right)=2\left(\sqrt{4-x^{2}}-\frac{x^{2}}{\sqrt{4-x^{2}}}\right) \\
& =2 \frac{4-x^{2}-x^{2}}{\sqrt{4-x^{2}}}=2 \frac{4-2 x^{2}}{\sqrt{4-x^{2}}}=4 \frac{2-x^{2}}{\sqrt{4-x^{2}}}=4 \frac{(\sqrt{2}-x)(\sqrt{2}+x)}{\sqrt{4-x^{2}}}
\end{aligned}
$$

Critical points: $A^{\prime}(x)=0 \Rightarrow x=\sqrt{2},-\sqrt{2}$ not in interval

$$
A^{\prime}(x) \quad D N E \Rightarrow 4-x^{2}=0 \Rightarrow x=2,-2 \text { not in interval }
$$

Evaluate $A(x)$ at critical points and endpoint:

$$
\left.\begin{array}{l}
A(0)=0 \\
A(\sqrt{2})=2 \sqrt{2} \sqrt{4-2}=4 \\
A(2)=0
\end{array}\right\}
$$

The rectangle with largest area has width $2 x=2 \sqrt{2}$
height $y=\sqrt{4-x^{2}}=\sqrt{2}$

3) A cylindrical box with open top has a volume of $50 \pi \mathrm{in}^{3}$. The material used for the bottom of the box costs $\$ 6$ per in ${ }^{2}$ The material used for the side of the box costs $\$ 15$ per in^{2}. Find the dimensions of the cheapest box.

Step 1: draw picture and name variables.

Step 2: find objective and constraints.
Objective: cost C of the box

$$
\begin{aligned}
C= & \$ 6 \cdot(\text { surface of bottom }) \\
& +\$ 15 \cdot(\text { surface of side }) \\
C= & 6 \pi r^{2}+15 \cdot 2 \pi r n \\
C= & 6 \pi r^{2}+30 \pi r n
\end{aligned}
$$

Constraints: volume is $50 \pi \Rightarrow \pi r^{2} h=50 \pi$

Step 3: use constraint to express objective in terms of one variable only.

$$
\pi r^{2} h=50 \pi \Rightarrow h=\frac{50}{r^{2}}
$$

So

$$
\begin{aligned}
C=6 \pi r^{2}+30 \pi r \cdot \frac{50}{r^{2}} \Rightarrow C(r) & =6 \pi r^{2}+\frac{1500 \pi}{r} . \\
C(r) & =6 \pi\left(r^{2}+\frac{250}{r}\right) .
\end{aligned}
$$

Step 4: find feasible interval.
Lengths cannot be negative : $r \geqslant 0$

$$
h \geqslant 0 \Rightarrow \frac{50}{r^{2}} \geqslant 0 \Rightarrow r \neq 0 .
$$

So the feasible interval is $(0, \infty)$.

Step 5: find max. of objective function on interval of interest.

$$
\begin{aligned}
& C(r)=6 \pi\left(r^{2}+\frac{250}{r}\right) \text { on }(0, \infty) . \\
& \Rightarrow C^{\prime}(r)=6 \pi\left(2 r-\frac{250}{r^{2}}\right)=6 \pi \frac{2 r^{3}-250}{r^{2}}=12 \pi \frac{r^{3}-125}{r^{2}}
\end{aligned}
$$

Critical points: $r^{3}-125=0 \Rightarrow r^{3}=125 \Rightarrow r=5$.
4. Interval is not closed and bounded.

4 We cannot find max/min by evaluating at endpoints and critical points.
\rightarrow We use FDT or SDT to classify the critical point.

With FDT:

With SDT: $C^{\prime \prime}(r)=6 \pi\left(2+\frac{500}{r^{3}}\right)>0$ on $(0, \infty)$.
So C concave up on $(0, \infty)$

Ether way, we conclude that $C(r)$ is minimal when

$$
r=5 \text { in and } h=\frac{50}{r^{2}}=2 \text { in }
$$

4) An 2 ft wall stands 16 ft away from an infinitely tall building. Find the length of the shortest straight beam that will reach the building from the ground outside the wall.

Objective: length of beam. For easier differentiation, we will optimize the square of the length.

$$
B=h^{2}+(x+16)^{2} .
$$

Constraint: similar triangles $\frac{h}{2}=\frac{x+16}{x} \Rightarrow h=2 \frac{x+16}{x}$

So objective is $B(x)=\left(2 \frac{x+16}{x}\right)^{2}+(x+16)^{2}=4\left(\frac{x+16}{x}\right)^{2}+(x+16)^{2}$

Feasable interval: $x>0$
We find the min. of $B(x)=4\left(\frac{x+16}{x}\right)^{2}+(x+16)^{2}$ on $[0, \infty)$.

$$
\begin{aligned}
& B^{\prime}(x)=4 \cdot 2 \frac{\text { outside }}{\frac{x+16}{x}} \cdot \frac{x-(x+16)}{x^{2}}+2(x+16)=-\frac{128(x+16)}{x^{3}}+2(x+16) \\
& =-2(x+16)\left(\frac{64}{x^{3}}-1\right)=-2(x+16) \frac{64-x^{3}}{x^{3}} .
\end{aligned}
$$

Critical point: $B^{\prime}(x)=0 \Rightarrow x+16=0 \Rightarrow x=-16^{\text {not in internal }}$

$$
\begin{aligned}
& x-x^{3}=0 \Rightarrow x^{3}=64 \Rightarrow x=4
\end{aligned}
$$

We use FDT to classify the critical point $x=4$.

$$
\longrightarrow \begin{array}{ll}
\longrightarrow & \text { shape of } f
\end{array} \quad \begin{aligned}
& x \\
& \hline
\end{aligned}
$$

So the shortest beam is obtained when $x=4 \mathrm{ft}$. It has length $L=\sqrt{2\left(\frac{4+16}{4}\right)^{2}+(4+16)^{2}}=20 \sqrt{2} \mathrm{ft}$.
5) A rectangular box has total surface area 216 in 2 and its length is 4 times its width. Find the dimensions of such a box with largest volume.

objective: volume $V=4 x^{2} h$
Constraints: $\quad S=216$

$$
\begin{aligned}
& 2 x h+8 x h+8 x^{2}=216 \\
& 10 x h+8 x^{2}=216
\end{aligned}
$$

So loxh $=216-8 x^{2} \Rightarrow h=\frac{216-8 x^{2}}{10 x}=\frac{108-4 x^{2}}{5 x}$
Sn the objective is $V(x)=4 x^{2} \frac{108-4 x^{2}}{5 x}$

$$
V(x)=\frac{4}{5} x\left(108-4 x^{2}\right)=\frac{4}{5}\left(108 x-4 x^{3}\right)
$$

Feasible interval: lengths must be $\geqslant 0$

$$
\begin{aligned}
& x \geqslant 0 \\
& h \geqslant 0 \Rightarrow \frac{108-4 x^{2}}{5 x}>0 \Rightarrow \begin{array}{l}
x^{2} \leqslant \frac{108}{4}=27 \Rightarrow x \leqslant \sqrt{27} . \\
x \neq 0
\end{array} \Rightarrow
\end{aligned}
$$

So the interval of interest is $(0, \sqrt{27}]$.

We find the absolute maximum of $V(x)=\frac{4}{5}\left(108 x-4 x^{3}\right)$ on $[0, \sqrt{27}]$.

$$
v^{\prime}(x)=\frac{4}{5}\left(108-12 x^{2}\right)
$$

Critical points: $108-12 x^{2}=0$

$$
\begin{aligned}
& x^{2}=9 \\
& x=3,-3
\end{aligned}
$$

We use the SDT to dassify the critical point $x=3$.

$$
V^{\prime \prime}(x)=\frac{4}{5}(-24 x)<0 \text { on }(0, \sqrt{27}] \text {. }
$$

So V is concave down on $(0, \sqrt{27}]$. So V is maximal when

$$
\begin{aligned}
& x=3 \text { in } \\
& h=\frac{108-4 x^{2}}{5 x}=\frac{24}{5} \text { in }
\end{aligned}
$$

